Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung Scarring Diseases Linked to Genes and Smoking

02.11.2005


New research shows that idiopathic interstitial pneumonia (IIP), a group of potentially fatal disorders that affects the lungs, may be caused by an interaction between a specific genetic background and cigarette smoking. In a study of 111 families that had at least two relatives with IIP, people who smoked cigarettes were three times more likely than non-smokers to develop the disease. The research was supported by the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute of Environmental Health Sciences (NIEHS), both institutes within the National Institutes of Health.



IIPs are often accompanied by scarring and inflammation of the lung known as pulmonary fibrosis. Pulmonary fibrosis makes the delivery of oxygen to the body’s tissues difficult and is often fatal. About one-half of patients die within the first five years of being diagnosed with idiopathic pulmonary fibrosis. The study appearing in the November 1 issue of the American Journal of Respiratory and Critical Care provides new insight into what might cause IIP and new directions for preventing these diseases.

"This study illustrates the important role that a specific environmental exposure, in this case cigarette smoking, can play in the development of this type of lung disease among people who have a specific gene,” said David A. Schwartz, M.D., NIEHS Director and a lead researcher on the study. “It once again underscores why people should not smoke.”


“Pulmonary fibrosis currently affects approximately 100,000 people in the United States, with an estimated 30,000 people being diagnosed each year,” added Elizabeth G. Nabel, MD, NHLBI Director. “This study enhances our understanding of one form of pulmonary fibrosis, which could help lead us to strategies for genetic testing, prevention, and treatment of this devastating and complex disease.”

Researchers from three sites enrolled and evaluated 111 families with a diagnosis of IIP in at least two affected relatives. The sample included 309 people affected with an IIP and 360 unaffected relatives. Each participant completed a detailed health and environmental exposure questionnaire, a chest x-ray, and a lung diffusion test, which determines how well oxygen passes from the air sacs of the lungs into the blood.

The researchers evaluated the data in many different ways. They used a family-based case control study to determine if there was a relationship between cigarette smoking and familial interstitial pneumonia (FIP). They also used two methods to determine if there was in fact a genetic component to FIP. FIP is the term used when 2 or more cases of IIP occur in the immediate family.

The researchers found that there is a genetic basis for this disease. In addition to the fact that 111 families had 2 or more relatives with this disease, the researchers also found similar age-at-diagnosis and significant risk among siblings. Older people, males, and those who smoked also showed a greater risk of developing FIP. After controlling for age and gender, having ever smoked cigarettes increased the likelihood of developing this disease 3.6 times.

“We now know that a certain genotype places someone at risk for this disease,” said Mark Steele, M.D., Associate Professor, Duke University Medical Center, the lead author on the paper. “Independent of genes, cigarette smoking also contributes to the development of this disease. The next step is to identify the specific gene or genes that cause the disease.”

Steele also noted that because this is the first study to include different types of IIP within the same families, it may be plausible that although a common gene may predispose one to develop FIP, some other factor, such as the environment, may result in a unique type of IIP.

In addition to Duke University Medical Center, Vanderbilt University School of Medicine and National Jewish Medical and Research Center participated in the study. The University of Colorado Health Sciences Center served as coordinating center.

NIH-supported research on the causes and treatments of pulmonary fibrosis is ongoing. For example, NHLBI established an Idiopathic Pulmonary Fibrosis Clinical Trials Network in May 2005 to conduct randomized, multi-drug therapeutic trials to stabilize pulmonary fibrosis in newly diagnosed patients.

NHLBI and NIEHS are part of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services. NIEHS information on the effects of the environment on human health is available at www.niehs.nih.gov. NHLBI information on lung diseases is available at www.nhlbi.nih.gov.

The National Institutes of Health (NIH) — The Nation’s Medical Research Agency — includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary Federal agency for conducting and supporting basic, clinical, and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NHLBI Communications Office | EurekAlert!
Further information:
http://www.nih.gov
http://www.nhlbi.nih.gov
http://www.niehs.nih.gov

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>