Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out of sight, out of mind? Not necessarily

02.11.2005


Visual information is processed even when the visual cortex is temporarily shut down

Visual information can be processed unconsciously when the area of the brain that records what the eye sees is temporarily shut down, according to research at Rice University in Houston.

The research, published the week of Oct. 31 in the Proceedings of the National Academy of Sciences’ (PNAS) online Early Edition, suggests the brain has more than one pathway along which visual information can be sent.



For the study, the researchers induced temporary, reversible blindness lasting only a fraction of a second in nine volunteers with normal vision. Transcranial magnetic stimulation (TMS), a harmless noninvasive technique using brief magnetic pulses, was applied to the volunteers’ visual cortex -- the area at the back of the brain that processes what the eye sees - to interrupt the normal visual pathway. The volunteers looked at a computer screen, and during their momentary blindness, either a horizontal or a vertical line or a red or a green dot flashed on the screen.

Researchers then asked the study participants whether they had seen a horizontal or a vertical line; because their primary visual pathway had been shut down, the participants reported that they saw nothing. However, when forced to guess which line had appeared on their computer screen, the participants gave the correct answer 75 percent of the time. When the participants had to guess whether a red or a green dot had flashed on the screen, they gave the correct answer with 81 percent accuracy.

"This high degree of accuracy for both the directional orientation and color tasks was significantly above chance," said Tony Ro, associate professor of psychology and principal investigator for the study. "Even though the human primary visual cortex activity was temporarily shut down, it’s clear that detailed visual information was still being processed unconsciously."

Because only a certain region of the thalamus - the area of the brain where all sensory information is relayed -- can process color, the study provides evidence that there must be a pathway that goes through this region of the thalamus to the higher visual centers of the brain, Ro said.

"In addition to providing direct evidence that unconscious processing takes place within the brain - a controversial claim that was advanced by the likes of Sigmund Freud and William James - our results suggest that multiple pathways relay visual input into the central nervous system for different types of processing," Ro said. "And our study also begins to shed light on the brain structures that are necessary for consciousness, with the primary visual cortex playing an essential role for visual awareness."

The phenomenon of "blindsight" has been reported in patients with brain damage who report not seeing something but correctly identify the shape and location when forced to guess. Ro noted that his study demonstrates that TMS can be used successfully to induce blindsight in people with normal vision.

Ro’s co-authors on the PNAS paper were graduate student Jennifer Boyer and Stephanie Harrison, a summer intern.

B.J. Almond | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>