Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study findings offer potential new targets for antibiotics

01.11.2005


A new study of genetic changes in bacteria may ultimately help drug makers stay a step ahead of disease-causing bacteria that can become resistant to antibiotics.



The secret lies in understanding the function of the ribosome, a tiny protein-making factory residing inside most cells.

Many currently used antibiotics alter a ribosome’s ability to make proteins, said Kurt Fredrick, a study co-author and an assistant professor of microbiology at Ohio State University.


But he and his colleagues at the University of Illinois thought that there may be additional places in a ribosome that future antibiotics could affect, places that current antibiotics don’t currently target.

The researchers were right.

“Antibiotic resistance will always be an issue,” Fredrick said. “But as long as we can stay ahead of the ability of the pathogens to resist antibiotics, we’re okay.”

The findings appear online this week in the Early Edition of the Proceedings of the National Academy of Sciences. Fredrick co-authored the study with lead author Alexander Mankin and with Aymen Yassin, both with the University of Illinois at Chicago.

Fredrick provided a strain of Escherichia coli important for the study.

In order to find out if their initial hunch was correct – that there actually are other “hot spots” on a ribosome that could act as potential targets for antibiotics – the researchers first introduced a mutated copy of the ribosomal genes into E. coli cells and looked for those rare mutations that could interfere with cell growth. It was known from previous studies that such deleterious mutations occurred within critical regions of the ribosome.

After identifying dozens of deleterious mutations, the researchers were able to produce a composite map showing where these mutations were positioned on the ribosomes. Interestingly, the map indicated that there were four additional places on ribosomes where these mutations clustered. While researchers already knew that these sites existed, they did not know that these areas could possibly become targets for antibiotics.

These sites are what may one day give pharmaceutical companies an edge in creating new antibiotics in order to keep ahead of bacteria’s clever way of developing resistance to antibiotics.

“Now that we know these other sites exist and that they could be potential targets for antibiotics, the next step is to figure out how exactly these mutations interfere with the cell’s own ribosomes,” Fredrick said.

The research was supported by a grant from the National Institutes of Health.

Kurt Fredrick | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>