Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study findings offer potential new targets for antibiotics

01.11.2005


A new study of genetic changes in bacteria may ultimately help drug makers stay a step ahead of disease-causing bacteria that can become resistant to antibiotics.



The secret lies in understanding the function of the ribosome, a tiny protein-making factory residing inside most cells.

Many currently used antibiotics alter a ribosome’s ability to make proteins, said Kurt Fredrick, a study co-author and an assistant professor of microbiology at Ohio State University.


But he and his colleagues at the University of Illinois thought that there may be additional places in a ribosome that future antibiotics could affect, places that current antibiotics don’t currently target.

The researchers were right.

“Antibiotic resistance will always be an issue,” Fredrick said. “But as long as we can stay ahead of the ability of the pathogens to resist antibiotics, we’re okay.”

The findings appear online this week in the Early Edition of the Proceedings of the National Academy of Sciences. Fredrick co-authored the study with lead author Alexander Mankin and with Aymen Yassin, both with the University of Illinois at Chicago.

Fredrick provided a strain of Escherichia coli important for the study.

In order to find out if their initial hunch was correct – that there actually are other “hot spots” on a ribosome that could act as potential targets for antibiotics – the researchers first introduced a mutated copy of the ribosomal genes into E. coli cells and looked for those rare mutations that could interfere with cell growth. It was known from previous studies that such deleterious mutations occurred within critical regions of the ribosome.

After identifying dozens of deleterious mutations, the researchers were able to produce a composite map showing where these mutations were positioned on the ribosomes. Interestingly, the map indicated that there were four additional places on ribosomes where these mutations clustered. While researchers already knew that these sites existed, they did not know that these areas could possibly become targets for antibiotics.

These sites are what may one day give pharmaceutical companies an edge in creating new antibiotics in order to keep ahead of bacteria’s clever way of developing resistance to antibiotics.

“Now that we know these other sites exist and that they could be potential targets for antibiotics, the next step is to figure out how exactly these mutations interfere with the cell’s own ribosomes,” Fredrick said.

The research was supported by a grant from the National Institutes of Health.

Kurt Fredrick | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>