Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New brain tumor model developed


A collaboration of researchers, led by Dr. Martine Roussel (St. Jude Children’s Research Hospital), has developed a novel mouse model of medulloblastoma -- the most prevalent malignant pediatric brain tumor -- that the researchers hope will more accurately represent the genetic changes involved in human brain tumor development.

Their study will be published in the November 15th issue of Genes & Development, but will also be made available online ahead of print on 10/31.

In their upcoming paper, the authors identify a heretofore unknown role for the cyclin-dependent kinase inhibitor, INK4C, in mediating medulloblastoma development, independent of p53 status. Using Ink4c-mutant mice, Dr. Roussel and colleagues demonstrated that Ink4c inactivation cooperates with mutations in Patched (Ptc1, a Shh receptor) to stimulate medulloblastoma formation, even when the p53 gene is intact.

Previously generated highly penetrant models of medulloblastoma rely on p53 loss for tumorigenesis, though in human patients, only about 10% of people actually display p53 mutations. "Preliminary data suggest that INK4c protein expression is diminished in a significant cohort of human medulloblastomas," says Dr. Roussel, "so the Pediatric Brain Tumor Program at our Institution is now planning to include a comprehensive survey of INK4c status in order to determine its prognostic significance."

Heather Cosel | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>