Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in brain, not age, determine one’s ability to focus on task

27.10.2005


When it comes to focusing on a task amid distractions, some folks more than 60 years old are as mentally sharp as 22-year-olds. Others struggle. Researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign have shed some light on why that is.



Reporting in the current issue (September) of the quarterly journal Psychology and Aging, the scientists say there is less white matter in the frontal lobes of those who struggle with focusing. The differences became apparent through the use of functional magnetic resonance (fMRI) imaging of the brains of 40 individuals ranging in age from 19 to 87.

"We found that both performance and brain-activation differences of older good performers and the older poor performers are predicted by changes in brain structure, specifically by the volume of white matter connecting the right and left hemispheres of the frontal lobes," said Arthur F. Kramer, a professor of psychology.


Participants took part in a "flanker" experiment in which they viewed a line of five keyboard arrows on a computer screen and reacted by pushing one of four buttons that corresponded with the direction the center arrow was pointing. Sometimes the participants would be distracted by changes in direction by arrows not in the center.

The experiment allowed researchers to study the ability to focus on important information and inhibit inappropriate information, Kramer said. Such focusing is important when driving a car, flying a plane or making a variety of everyday decisions.

Young people and high-functioning older adults tended to call upon tissue from the right frontal lobe -- specifically, the right middle frontal gyrus -- while some older, poorer-scoring participants also activated tissue in the left hemisphere (left middle frontal gyrus), said lead author Stan J. Colcombe, a research scientist at the Beckman Institute.

Previous research has shown similar results, followed by assumptions that other parts of the brain were activated by older people for assistance, not unlike using a cane to walk, Colcombe said. In this case, however, fMRI unveiled that the poor-performing over-60 participants were the ones using both frontal hemispheres. The older participants keeping pace with the younger group used only the right hemisphere.

Looking at the high-resolution images taken by fMRI by way of a voxel-based morphometric technique, which provides a 3D view of brain structure, the scientists examined gray and white matter. Gray matter represents neurons, or the processing units, while white matter can be thought of as the wiring that connects neurons.

No significant differences were detected in the gray matter. However, the poorer-performing older members had dramatically less white matter. Kramer and Colcombe theorize that the reduced white matter affects inhibition, the ability to turn off activation in the part of the brain not needed to complete a task.

"There is an underlying structure that supports these functions," Colcombe said. "We know that certain areas within the frontal lobes of the brain are most active in inhibitory tasks. These areas shrink with age. We are very interested in how the gray matter, the local processors, and the white matter -- the connecting inside wires -- interact."

Research in Kramer’s lab conducted in 2003 showed differences in gray and white matter in parts of the brain involved in decision-making in older people. Last year, Kramer, Colcombe and colleagues documented that six months of mild exercise significantly improved brain wiring and performance.

"I think this new work fits in very well," Kramer said. "This was basic research. It didn’t involve an intervention like fitness training, but we now know that the amount of white matter can predict how well a person does on a task involving inhibition control."

Other co-authors on the new paper were Kirk I. Erickson and Paige Scalf, postdoctoral researchers at the Beckman Institute.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>