Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in brain, not age, determine one’s ability to focus on task

27.10.2005


When it comes to focusing on a task amid distractions, some folks more than 60 years old are as mentally sharp as 22-year-olds. Others struggle. Researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign have shed some light on why that is.



Reporting in the current issue (September) of the quarterly journal Psychology and Aging, the scientists say there is less white matter in the frontal lobes of those who struggle with focusing. The differences became apparent through the use of functional magnetic resonance (fMRI) imaging of the brains of 40 individuals ranging in age from 19 to 87.

"We found that both performance and brain-activation differences of older good performers and the older poor performers are predicted by changes in brain structure, specifically by the volume of white matter connecting the right and left hemispheres of the frontal lobes," said Arthur F. Kramer, a professor of psychology.


Participants took part in a "flanker" experiment in which they viewed a line of five keyboard arrows on a computer screen and reacted by pushing one of four buttons that corresponded with the direction the center arrow was pointing. Sometimes the participants would be distracted by changes in direction by arrows not in the center.

The experiment allowed researchers to study the ability to focus on important information and inhibit inappropriate information, Kramer said. Such focusing is important when driving a car, flying a plane or making a variety of everyday decisions.

Young people and high-functioning older adults tended to call upon tissue from the right frontal lobe -- specifically, the right middle frontal gyrus -- while some older, poorer-scoring participants also activated tissue in the left hemisphere (left middle frontal gyrus), said lead author Stan J. Colcombe, a research scientist at the Beckman Institute.

Previous research has shown similar results, followed by assumptions that other parts of the brain were activated by older people for assistance, not unlike using a cane to walk, Colcombe said. In this case, however, fMRI unveiled that the poor-performing over-60 participants were the ones using both frontal hemispheres. The older participants keeping pace with the younger group used only the right hemisphere.

Looking at the high-resolution images taken by fMRI by way of a voxel-based morphometric technique, which provides a 3D view of brain structure, the scientists examined gray and white matter. Gray matter represents neurons, or the processing units, while white matter can be thought of as the wiring that connects neurons.

No significant differences were detected in the gray matter. However, the poorer-performing older members had dramatically less white matter. Kramer and Colcombe theorize that the reduced white matter affects inhibition, the ability to turn off activation in the part of the brain not needed to complete a task.

"There is an underlying structure that supports these functions," Colcombe said. "We know that certain areas within the frontal lobes of the brain are most active in inhibitory tasks. These areas shrink with age. We are very interested in how the gray matter, the local processors, and the white matter -- the connecting inside wires -- interact."

Research in Kramer’s lab conducted in 2003 showed differences in gray and white matter in parts of the brain involved in decision-making in older people. Last year, Kramer, Colcombe and colleagues documented that six months of mild exercise significantly improved brain wiring and performance.

"I think this new work fits in very well," Kramer said. "This was basic research. It didn’t involve an intervention like fitness training, but we now know that the amount of white matter can predict how well a person does on a task involving inhibition control."

Other co-authors on the new paper were Kirk I. Erickson and Paige Scalf, postdoctoral researchers at the Beckman Institute.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>