Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies on human genome variation provide insight into disease

27.10.2005


The International HapMap Project was initiated with the primary goal of facilitating medical studies and understanding the genomic basis for human diseases. To coordinate with the journal Nature’s publication describing the HapMap, the journal Genome Research is announcing a special issue entitled "Human Genome Variation," which is entirely devoted to studies using these data to provide insight into human biology and disease.



Predicting pregnancy success

Successful human reproduction and the maintenance of early pregnancy are dependent on a cluster of genes on chromosome 19 called the Luteinizing Hormone/Chorionic Gonadotropin Beta (LHB/CGB). During primate evolution, this cluster actively underwent numerous gene duplications and structural rearrangements, allowing the associated genes to acquire new biological functions.


In this month’s issue of Genome Research, Dr. Maris Laan and her colleagues report their analysis of the LHB/CGB cluster in three human populations: European Estonians, African Mandenka, and Chinese Han. They demonstrate how gene conversion was critical for shaping the genetic diversity of this region in humans.

"This study paves the way for examining an individual’s potential reproductive success based on sequence variants of the LHB/CGB genes," explains Laan. "We may be able to determine whether an individual is particularly susceptible to spontaneous abortions or reduced gonadal function, for example."

Contact:
Maris Laan, Ph.D.
Research Professor, University of Tartu, Estonia
Phone: +372-53495258
E-mail: maris@ebc.ee

X-ing out hereditary prostate cancer

According to the Prostate Cancer Foundation, one of every six American men develops prostate cancer, making it the most common form of non-skin cancer. Growing evidence suggests that there is a significant hereditary component to the disease, and one of the most strongly associated genomic regions lies on the X chromosome.

This X chromosomal region spans a cluster of five SPANX genes that are predominantly expressed in the testis and in certain tumors. In this month’s issue of Genome Research, Dr. Vladimir Larionov and his colleagues examined the genetic architecture of the SPANX cluster and showed how the region exhibited dynamic deletions, duplications, and gene conversion events, some of which may have resulted in the development of mutations involved in prostate cancer susceptibility.

"Because of the strong similarity among genes in this region, we had to develop a new technique for our mutational analysis, which we call TAR cloning," explains Larionov. "Using this method, we isolated the SPANX region from 200 individuals by recombination in yeast."

Based on their results, the authors speculate that predisposition to prostate cancer – at least in some individuals – is determined by the specific architecture of the SPANX gene cluster on the X chromosome. "We’re hoping to clarify which specific types of genomic rearrangements lead to prostate cancer susceptibility," says Larinov, "so that we can someday identify therapeutic targets for this disease."

Contact:
Vladimir Larionov, Ph.D.
Head, Genome Structure and Function Section, National Cancer Institute
Phone: 301-496-7941
E-mail: larionov@mail.nih.gov

Genetic traffic in DiGeorge syndrome

One of the most common human genomic disorders, DiGeorge syndrome, occurs in one of every 2,000-4,000 live births and involves a deletion on chromosome 22. The deletion is mediated by rare repetitive sequences that flank genes crucial for proper development of the heart, face, and upper thorax.

Dr. Bernice Morrow and her colleagues describe in this month’s issue of Genome Research how they examined these flanking repetitive sequences for patterns of polymorphisms. "Our results show that there are intervals with more frequent traffic of genetic material – regions with higher rates of gene conversion or recombination – that are indicative of genomic instability," explains Morrow.

"With this knowledge in hand, we hope to screen our patients and identify the genomic mechanism underlying this important disease," says Morrow.

Contact:
Bernice Morrow, Ph.D.
Professor, Albert Einstein College of Medicine
Phone: 718-430-4274
E-mail: morrow@aecom.yu.edu

Looking for genes in all the right places

Geneticists rely on variation, or alterations in DNA sequence, for disease-association studies. Hereditary traits such as heart disease, arthritis, and Alzheimer’s can be assigned to specific genomic regions based on their association with DNA markers.

The success of disease-association studies is dependent upon several characteristics of the DNA markers, including allelic frequency and genomic coverage. In some cases, a particular variant at one locus is perfectly associated with a specific variant at another locus; in other words, the two markers are "genetically indistinguishable."

Dr. Lon Cardon and his colleagues describe in this month’s issue of Genome Research how these "genetically indistinguishable" polymorphisms can complicate the identification of disease-related genes. "Although they should pose few difficulties when they are located close together on the same chromosome, they often occur on different chromosomes, where it is quite another story," explains Cardon. When this is the case, true disease genes cannot be distinguished from their anonymous genetic ’twins.’

"Research in human genetic variation is rapidly moving towards realizing our aims of improving diagnosis of common diseases such as diabetes and heart disease," says Cardon, "but the genome is tricky; it won’t reveal its secrets easily. The real disease-causing culprits can have many silent partners. We need to know the relationships of all these partners to focus on real disease mutations and to minimize attention on the innocent gene variants that colour the humanity of life."

Contact:
Lon R. Cardon, Ph.D.
Professor of Bioinformatics, University of Oxford
Phone: +44-01865-287591
E-mail: lon.cardon@well.ox.ac.uk

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>