Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies on human genome variation provide insight into disease

27.10.2005


The International HapMap Project was initiated with the primary goal of facilitating medical studies and understanding the genomic basis for human diseases. To coordinate with the journal Nature’s publication describing the HapMap, the journal Genome Research is announcing a special issue entitled "Human Genome Variation," which is entirely devoted to studies using these data to provide insight into human biology and disease.



Predicting pregnancy success

Successful human reproduction and the maintenance of early pregnancy are dependent on a cluster of genes on chromosome 19 called the Luteinizing Hormone/Chorionic Gonadotropin Beta (LHB/CGB). During primate evolution, this cluster actively underwent numerous gene duplications and structural rearrangements, allowing the associated genes to acquire new biological functions.


In this month’s issue of Genome Research, Dr. Maris Laan and her colleagues report their analysis of the LHB/CGB cluster in three human populations: European Estonians, African Mandenka, and Chinese Han. They demonstrate how gene conversion was critical for shaping the genetic diversity of this region in humans.

"This study paves the way for examining an individual’s potential reproductive success based on sequence variants of the LHB/CGB genes," explains Laan. "We may be able to determine whether an individual is particularly susceptible to spontaneous abortions or reduced gonadal function, for example."

Contact:
Maris Laan, Ph.D.
Research Professor, University of Tartu, Estonia
Phone: +372-53495258
E-mail: maris@ebc.ee

X-ing out hereditary prostate cancer

According to the Prostate Cancer Foundation, one of every six American men develops prostate cancer, making it the most common form of non-skin cancer. Growing evidence suggests that there is a significant hereditary component to the disease, and one of the most strongly associated genomic regions lies on the X chromosome.

This X chromosomal region spans a cluster of five SPANX genes that are predominantly expressed in the testis and in certain tumors. In this month’s issue of Genome Research, Dr. Vladimir Larionov and his colleagues examined the genetic architecture of the SPANX cluster and showed how the region exhibited dynamic deletions, duplications, and gene conversion events, some of which may have resulted in the development of mutations involved in prostate cancer susceptibility.

"Because of the strong similarity among genes in this region, we had to develop a new technique for our mutational analysis, which we call TAR cloning," explains Larionov. "Using this method, we isolated the SPANX region from 200 individuals by recombination in yeast."

Based on their results, the authors speculate that predisposition to prostate cancer – at least in some individuals – is determined by the specific architecture of the SPANX gene cluster on the X chromosome. "We’re hoping to clarify which specific types of genomic rearrangements lead to prostate cancer susceptibility," says Larinov, "so that we can someday identify therapeutic targets for this disease."

Contact:
Vladimir Larionov, Ph.D.
Head, Genome Structure and Function Section, National Cancer Institute
Phone: 301-496-7941
E-mail: larionov@mail.nih.gov

Genetic traffic in DiGeorge syndrome

One of the most common human genomic disorders, DiGeorge syndrome, occurs in one of every 2,000-4,000 live births and involves a deletion on chromosome 22. The deletion is mediated by rare repetitive sequences that flank genes crucial for proper development of the heart, face, and upper thorax.

Dr. Bernice Morrow and her colleagues describe in this month’s issue of Genome Research how they examined these flanking repetitive sequences for patterns of polymorphisms. "Our results show that there are intervals with more frequent traffic of genetic material – regions with higher rates of gene conversion or recombination – that are indicative of genomic instability," explains Morrow.

"With this knowledge in hand, we hope to screen our patients and identify the genomic mechanism underlying this important disease," says Morrow.

Contact:
Bernice Morrow, Ph.D.
Professor, Albert Einstein College of Medicine
Phone: 718-430-4274
E-mail: morrow@aecom.yu.edu

Looking for genes in all the right places

Geneticists rely on variation, or alterations in DNA sequence, for disease-association studies. Hereditary traits such as heart disease, arthritis, and Alzheimer’s can be assigned to specific genomic regions based on their association with DNA markers.

The success of disease-association studies is dependent upon several characteristics of the DNA markers, including allelic frequency and genomic coverage. In some cases, a particular variant at one locus is perfectly associated with a specific variant at another locus; in other words, the two markers are "genetically indistinguishable."

Dr. Lon Cardon and his colleagues describe in this month’s issue of Genome Research how these "genetically indistinguishable" polymorphisms can complicate the identification of disease-related genes. "Although they should pose few difficulties when they are located close together on the same chromosome, they often occur on different chromosomes, where it is quite another story," explains Cardon. When this is the case, true disease genes cannot be distinguished from their anonymous genetic ’twins.’

"Research in human genetic variation is rapidly moving towards realizing our aims of improving diagnosis of common diseases such as diabetes and heart disease," says Cardon, "but the genome is tricky; it won’t reveal its secrets easily. The real disease-causing culprits can have many silent partners. We need to know the relationships of all these partners to focus on real disease mutations and to minimize attention on the innocent gene variants that colour the humanity of life."

Contact:
Lon R. Cardon, Ph.D.
Professor of Bioinformatics, University of Oxford
Phone: +44-01865-287591
E-mail: lon.cardon@well.ox.ac.uk

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>