Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies on human genome variation provide insight into disease

27.10.2005


The International HapMap Project was initiated with the primary goal of facilitating medical studies and understanding the genomic basis for human diseases. To coordinate with the journal Nature’s publication describing the HapMap, the journal Genome Research is announcing a special issue entitled "Human Genome Variation," which is entirely devoted to studies using these data to provide insight into human biology and disease.



Predicting pregnancy success

Successful human reproduction and the maintenance of early pregnancy are dependent on a cluster of genes on chromosome 19 called the Luteinizing Hormone/Chorionic Gonadotropin Beta (LHB/CGB). During primate evolution, this cluster actively underwent numerous gene duplications and structural rearrangements, allowing the associated genes to acquire new biological functions.


In this month’s issue of Genome Research, Dr. Maris Laan and her colleagues report their analysis of the LHB/CGB cluster in three human populations: European Estonians, African Mandenka, and Chinese Han. They demonstrate how gene conversion was critical for shaping the genetic diversity of this region in humans.

"This study paves the way for examining an individual’s potential reproductive success based on sequence variants of the LHB/CGB genes," explains Laan. "We may be able to determine whether an individual is particularly susceptible to spontaneous abortions or reduced gonadal function, for example."

Contact:
Maris Laan, Ph.D.
Research Professor, University of Tartu, Estonia
Phone: +372-53495258
E-mail: maris@ebc.ee

X-ing out hereditary prostate cancer

According to the Prostate Cancer Foundation, one of every six American men develops prostate cancer, making it the most common form of non-skin cancer. Growing evidence suggests that there is a significant hereditary component to the disease, and one of the most strongly associated genomic regions lies on the X chromosome.

This X chromosomal region spans a cluster of five SPANX genes that are predominantly expressed in the testis and in certain tumors. In this month’s issue of Genome Research, Dr. Vladimir Larionov and his colleagues examined the genetic architecture of the SPANX cluster and showed how the region exhibited dynamic deletions, duplications, and gene conversion events, some of which may have resulted in the development of mutations involved in prostate cancer susceptibility.

"Because of the strong similarity among genes in this region, we had to develop a new technique for our mutational analysis, which we call TAR cloning," explains Larionov. "Using this method, we isolated the SPANX region from 200 individuals by recombination in yeast."

Based on their results, the authors speculate that predisposition to prostate cancer – at least in some individuals – is determined by the specific architecture of the SPANX gene cluster on the X chromosome. "We’re hoping to clarify which specific types of genomic rearrangements lead to prostate cancer susceptibility," says Larinov, "so that we can someday identify therapeutic targets for this disease."

Contact:
Vladimir Larionov, Ph.D.
Head, Genome Structure and Function Section, National Cancer Institute
Phone: 301-496-7941
E-mail: larionov@mail.nih.gov

Genetic traffic in DiGeorge syndrome

One of the most common human genomic disorders, DiGeorge syndrome, occurs in one of every 2,000-4,000 live births and involves a deletion on chromosome 22. The deletion is mediated by rare repetitive sequences that flank genes crucial for proper development of the heart, face, and upper thorax.

Dr. Bernice Morrow and her colleagues describe in this month’s issue of Genome Research how they examined these flanking repetitive sequences for patterns of polymorphisms. "Our results show that there are intervals with more frequent traffic of genetic material – regions with higher rates of gene conversion or recombination – that are indicative of genomic instability," explains Morrow.

"With this knowledge in hand, we hope to screen our patients and identify the genomic mechanism underlying this important disease," says Morrow.

Contact:
Bernice Morrow, Ph.D.
Professor, Albert Einstein College of Medicine
Phone: 718-430-4274
E-mail: morrow@aecom.yu.edu

Looking for genes in all the right places

Geneticists rely on variation, or alterations in DNA sequence, for disease-association studies. Hereditary traits such as heart disease, arthritis, and Alzheimer’s can be assigned to specific genomic regions based on their association with DNA markers.

The success of disease-association studies is dependent upon several characteristics of the DNA markers, including allelic frequency and genomic coverage. In some cases, a particular variant at one locus is perfectly associated with a specific variant at another locus; in other words, the two markers are "genetically indistinguishable."

Dr. Lon Cardon and his colleagues describe in this month’s issue of Genome Research how these "genetically indistinguishable" polymorphisms can complicate the identification of disease-related genes. "Although they should pose few difficulties when they are located close together on the same chromosome, they often occur on different chromosomes, where it is quite another story," explains Cardon. When this is the case, true disease genes cannot be distinguished from their anonymous genetic ’twins.’

"Research in human genetic variation is rapidly moving towards realizing our aims of improving diagnosis of common diseases such as diabetes and heart disease," says Cardon, "but the genome is tricky; it won’t reveal its secrets easily. The real disease-causing culprits can have many silent partners. We need to know the relationships of all these partners to focus on real disease mutations and to minimize attention on the innocent gene variants that colour the humanity of life."

Contact:
Lon R. Cardon, Ph.D.
Professor of Bioinformatics, University of Oxford
Phone: +44-01865-287591
E-mail: lon.cardon@well.ox.ac.uk

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>