Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on signaling mechanism in stem cells, cancer

25.10.2005


UCSF scientists have illuminated a key step in a signaling pathway that helps orchestrate embryonic development. The finding, they say, could lead to insights into the development of stem cells, as well as birth defects and cancers, and thus fuel therapeutic strategies.

The study, reported in Nature (Oct. 13, 2005), focuses on the Hedgehog family of signaling molecules, which play a central role in directing development of the early embryo’s growth and spatial plan, as well as its later organ and limb development. Defects in Hedgehog signaling are a significant cause of some birth defects and cancers.

Secreted from one cell, a Hedgehog signal shoots to the surface receptor of a second cell, and then, in a rapid-fire succession of biochemical reactions, relays a message into the cell’s nucleus. There, it issues an instruction, prompting the cell to divide, or specialize into a particular cell type, or migrate to help form another part of the embryo, and so on. This transaction, known as signal transduction, is a ceaseless activity of embryonic development.



Scientists have long known that Hedgehog signaling requires the activity of a protein known as Smoothened. This has been demonstrated in animals ranging from insects to humans.

They have also known that defects in Smoothened, which only functions within Hedgehog signaling, are responsible for some cases of human cancers – most prominently a skin cancer known as basal cell carcinoma and a childhood brain cancer known as medulloblastoma -- as well as some birth defects.

However, they have not known how Smoothened executes its function, nor where it is located in the target cell.

Now, through a series of studies conducted in several types of cells in culture, and in zebrafish and mouse embryos, the UCSF scientists have answered both questions. In the process, they have revealed the critical role of a cellular component that until now has been a mystery: an antenna-like structure attached to cells known as the primary cilium.

The primary cilium, it turns out, serves as the fulcrum in a series of acrobatic like moves between the Hedgehog signal and the Smoothened protein. Once Hedgehog has latched on to its receptor on the target cell’s surface, it prompts the cell to move Smoothened, located in vesicles around the cell’s nucleus, to the primary cilium. The positioning of Smoothened on the cilium, in turn, prompts downstream signaling of Hedgehog signals into the nucleus, where the instructions are issued.

Just how or what the primary cilium is doing to promote Smoothened’s activity is not clear, say the researchers. However, its involvement in the process is a revelation.

Scientists elsewhere reported in Nature in (Nov. 6, 2003) that removal of the primary cilium from cells led to defects in neural patterning resulting from Hedgehog signaling. However, they didn’t know why.

"This study takes two mysteries – how Smoothened functions and the role of the primary cilium – and suggests a mechanism by which they are connected," says the senior author of the study, Jeremy Reiter, MD, PhD, a fellow in the UCSF Program in Developmental and Stem Cell Biology, which is part of the UCSF Institute for Stem Cell and Tissue Biology.

The implications for medical research, he says, are significant.

Hedgehog signals play an important role in prompting embryonic and adult stem cells to differentiate into some of the specialized cells that make up the body’s tissues -- such as those of the brain, pancreas and skin. The new finding, says Reiter, will advance scientists efforts to use signaling molecules to direct the differentiation of embryonic stem cells in the culture dish, with the goal of using them to replace or replenish damaged tissues in patients.

The discovery could be particularly important for neural stem cell research, says Arnold Kriegstein, MD, PhD, director of the UCSF Institute for Stem Cell and Tissue Biology. Kriegstein, a neural stem cell scientist, was not an author on the study.

"Hedgehog signaling plays a critical role in prompting the differentiation of neural stem cells into the various forms of neurons in the brain," he says. "The discovery of the importance of the cilium in Hedgehog signaling should significantly advance our understanding of the mechanisms involved," he says.

The finding should fuel research into the causes of certain birth defects (such as holoprosencephaly and limb defects) and cancers, says Reiter. Smoothened is already known to be a proto-oncogene, a normal gene that, if mutated, is capable of causing cancers. But its close involvement with the primary cilium suggests that the latter may also be implicated, suggesting a possible target for therapy.

More broadly, says Reiter, the primary cilium’s role in Hedgehog signaling indicates it is likely to function in other signaling pathways, as well.

The scientists moved in on the role of Smoothened and the primary cilium incrementally. First, driven by their interest in Smoothened, they set out to determine where it was expressed in the embryo. They did so by developing highly specific antibodies to the protein and applying them to the tissue of an eight-day mouse embryo. The study revealed that Smoothened was modestly upregulated in cells of the node, an important early organizer tissue within the mouse embryo, and was expressed predominantly along the primary cilium of these nodal cells. This was a significant surprise.

Second, to examine whether Smoothened’s movement from vesicles around the nucleus to the cilium was regulated by Hedgehog signals, they carried out two studies, one involving cultured epithelial and fibroblasts cells expressing Smoothened, another involving a mouse embryo. In both cases, one set of cells was exposed to Hedgehog signals. Another set was exposed to cyclopamine, a drug that blocks Smoothened’s function. In the cells exposed to the Hedgehog signals, Smoothened moved from the vesicles of the cell body to the cilium. In the cells exposed to cyclopamine, Smoothened was undetectable on the cilium.

Scientists have known that cyclopamine inhibits Hedgehog signaling and can prevent Hedgehog-dependent cancers from spreading. The demonstration that the drug affected Smoothened movement to the cilium suggests how cyclopamine inhibits the Hedgehog pathway, the researchers say, and shows that the correlation between Smoothened on the cilium and pathway activation is very tight.

Third, they examined whether the Smoothened protein included an amino acid sequence that other seven-transmembrane proteins require to move to the primary cilium and, if so, whether this sequence – a so-called "motif" – was essential to its relocation there. The answer to both questions was yes: A study of mouse cells in which Smoothened was mutated to lack the motif revealed that Smoothened no longer moved to the primary cilium.

Finally, to determine Smoothened’s function, they tested the mutant form of Smoothened that no longer could move to the primary cilium in epithelial cells in culture and in zebrafish embryos to see if the protein still functioned. It did not.

"Thus, not only does Smoothened ciliary localization depend up on Hedgehog signaling, but Hedgehog signaling depends on a Smoothened ciliary localization motif," says Reiter.

"Whether Smoothened functions at the cilium in all cell types remains to be determined. In addition, how Smoothened activates the Hedgehog pathway at the cilium remains unclear," he says. "But the current finding lays the groundwork for future studies that could ultimately have clinical benefit."

Co-authors of the study were Kevin C. Corbit, Pia Aanstad, Veena Singla, Andrew R. Norman and Didier Y.R. Stainier, PhD. All are members of the UCSF Program in Developmental and Stem Cell Biology and the UCSF Diabetes Center. Aanstad and Stainier are also members of the UCSF Department of Biochemistry and Biophysics. All are also members of the UCSF Institute for Stem Cell and Tissue Biology.

Jennifer O’Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>