Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slacker or sick?

25.10.2005


Early nerve damage caused by repetitive strain injuries can trigger "sick worker" syndrome -- characterized by malaise, fatigue and depression, and often mistaken for poor performance, according to a study by Ann Barr, Ph.D., and Mary Barbe, Ph.D., at Temple University’s College of Health Professions. The study, "Increase in inflammatory cytokines in median nerves in a rat model of repetitive motion injury," is published this month in the Journal of Neuroimmunology.



Repetitive strain injuries are the nation’s most common and costly occupational health problem, affecting hundreds of thousands of American workers and costing more than $20 billion a year in worker’s compensation, so employers have long been interested in the connection between the two conditions.

The purpose of the study was to observe early changes in nerves caused by repetitive strain that lead to chronic pain and eventual degenerative problems such as carpal tunnel syndrome, tendonitis, tennis elbow or other serious neural and musculoskeletal injuries. The Temple researchers hope the findings could one day lead to early intervention techniques that would prevent permanent damage.


They discovered that nerve injuries caused by low-force, highly repetitive work can be blamed on an onslaught of cytokines -- proteins that help start inflammation. These cytokines, known also to spark symptoms of malaise, appear in injured nerves as early as three weeks after the first signs of cell stress -- much earlier than previously believed. As the nerve injury progressed, ever greater numbers of cytokines were made at the injury site.

Unexpectedly, the researchers also found that the cytokines affected the rats’ psychosocial responses. With so many cytokines entering the blood stream so early, some apparently traveled to the brain, sparking the rat version of "sick-worker" syndrome. "At three weeks, even before the rats experienced pain from their wrist injuries, we watched them self-regulate their work behavior," said Barr. "With inflammatory proteins in the bloodstream, they began to slack off from completing their tasks."

By five weeks to eight weeks, when cytokine production reached "peak" levels, some rats curled up in a ball and slept in between tasks.

The researchers theorize that as early as three weeks -- as cytokines first appear in the newly injured nerve -- signs of "sick-worker" syndrome may begin. Employees may call out sick because of undefined symptoms, or slow down their work production. A low-grade depression may set in.

The connection between this "off" feeling and possible neural and musculoskeletal injuries may not be immediately apparent to the employee or employer, since actual pain is rare at this early stage of injury. Over months, however, as inflammation worsens, chronic pain will eventually lead workers to seek clinical help.

While some employers might see the cytokine connection as a simple opportunity to slack off work, Barbe disagrees.

"Cytokines are self-protective," she says. "This undefined feeling of malaise may be telling the body to take some time off to heal, before things get worse."

The next step for the researchers is to look more specifically at the psychosocial component of cytokines and their effect. To do this, they have been awarded a $1.3 million grant from the National Institute of Occupational Safety and Health at the Centers for Disease Control and Prevention.

They are also in the process of translating their research into human subjects. In an earlier rat study, Barr and Barr observed increases in circulating blood levels of serum cytokines. They are now finishing a study in which they are examining blood collected from humans diagnosed with repetitive strain injuries for these cytokines. Positive findings could aid earlier diagnosis and therefore earlier treatment.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>