Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slacker or sick?

25.10.2005


Early nerve damage caused by repetitive strain injuries can trigger "sick worker" syndrome -- characterized by malaise, fatigue and depression, and often mistaken for poor performance, according to a study by Ann Barr, Ph.D., and Mary Barbe, Ph.D., at Temple University’s College of Health Professions. The study, "Increase in inflammatory cytokines in median nerves in a rat model of repetitive motion injury," is published this month in the Journal of Neuroimmunology.



Repetitive strain injuries are the nation’s most common and costly occupational health problem, affecting hundreds of thousands of American workers and costing more than $20 billion a year in worker’s compensation, so employers have long been interested in the connection between the two conditions.

The purpose of the study was to observe early changes in nerves caused by repetitive strain that lead to chronic pain and eventual degenerative problems such as carpal tunnel syndrome, tendonitis, tennis elbow or other serious neural and musculoskeletal injuries. The Temple researchers hope the findings could one day lead to early intervention techniques that would prevent permanent damage.


They discovered that nerve injuries caused by low-force, highly repetitive work can be blamed on an onslaught of cytokines -- proteins that help start inflammation. These cytokines, known also to spark symptoms of malaise, appear in injured nerves as early as three weeks after the first signs of cell stress -- much earlier than previously believed. As the nerve injury progressed, ever greater numbers of cytokines were made at the injury site.

Unexpectedly, the researchers also found that the cytokines affected the rats’ psychosocial responses. With so many cytokines entering the blood stream so early, some apparently traveled to the brain, sparking the rat version of "sick-worker" syndrome. "At three weeks, even before the rats experienced pain from their wrist injuries, we watched them self-regulate their work behavior," said Barr. "With inflammatory proteins in the bloodstream, they began to slack off from completing their tasks."

By five weeks to eight weeks, when cytokine production reached "peak" levels, some rats curled up in a ball and slept in between tasks.

The researchers theorize that as early as three weeks -- as cytokines first appear in the newly injured nerve -- signs of "sick-worker" syndrome may begin. Employees may call out sick because of undefined symptoms, or slow down their work production. A low-grade depression may set in.

The connection between this "off" feeling and possible neural and musculoskeletal injuries may not be immediately apparent to the employee or employer, since actual pain is rare at this early stage of injury. Over months, however, as inflammation worsens, chronic pain will eventually lead workers to seek clinical help.

While some employers might see the cytokine connection as a simple opportunity to slack off work, Barbe disagrees.

"Cytokines are self-protective," she says. "This undefined feeling of malaise may be telling the body to take some time off to heal, before things get worse."

The next step for the researchers is to look more specifically at the psychosocial component of cytokines and their effect. To do this, they have been awarded a $1.3 million grant from the National Institute of Occupational Safety and Health at the Centers for Disease Control and Prevention.

They are also in the process of translating their research into human subjects. In an earlier rat study, Barr and Barr observed increases in circulating blood levels of serum cytokines. They are now finishing a study in which they are examining blood collected from humans diagnosed with repetitive strain injuries for these cytokines. Positive findings could aid earlier diagnosis and therefore earlier treatment.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>