Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find alterations in brain’s circuitry caused by cocaine

24.10.2005


Cocaine causes specific alterations in the brain’s circuitry at a genetic level, including short-term changes that result in a high from the cocaine, as well as long-term changes seen in addiction, researchers from UT Southwestern Medical Center have found.



Such findings suggest possible new directions for treatments for addiction to the drug, they said.

In a study available online and in the Oct. 20 issue of Neuron, UT Southwestern researchers used rodents to pinpoint an important molecular mechanism that switches genes "on" in the part of the brain involved in drug-induced rewards. They also determined that cocaine, through a process called "chromatin remodeling," alters the normal biochemical processes that allow these specific genes to be turned on and off.


"Our study provides a fundamentally new level of analysis by which we can better understand the actions of cocaine in brain-reward regions at the molecular level," said senior author Dr. Eric Nestler, chairman of UT Southwestern’s Department of Psychiatry. "It also points to new potential treatments for addiction."

In order for genes to be activated, or "expressed," proteins called transcription factors have to be able to access the gene and copy its instructions for making other proteins. Typically, a group of proteins called histones tightly binds genes, keeping them from being accessed by transcription factors. Normally, histones undergo chemical changes to convert them from tightly binding a gene to a state where they
are less bound and no longer inhibit gene expression.

However, through chromatin remodeling - or modifying the genetic material located in the cell’s nucleus - cocaine chemically alters histones, causing them to loosen their "grip" on certain genes and allowing transcription factors to turn the genes on, the researchers found.

"Our study was the first to examine histone changes on particular genes in brain-reward regions known to be important for cocaine addiction," said Dr. Nestler, who holds the Lou and Ellen McGinley Distinguished Chair in Psychiatric Research. "We have shown that several genes known to be activated by acute or chronic cocaine use indeed show changes in histone chemical modifications that lead to the genes’ activation."

Another discovery was that chronic cocaine use causes chemical changes to a different type of histone than acute cocaine use does, which may help explain why the behavioral effects of acute versus chronic cocaine use in people are so different, Dr. Nestler said.

Researchers learned, through administering single doses and repeated doses of cocaine to groups of rats and mice, that some of the changes in histones caused by the drug are quite stable, lasting for more than a week after the last cocaine dosage. From that, they concluded that chronic cocaine use may cause long-lasting changes in the brain’s circuitry, whereas short-term use affects genes differently.

"One of the cardinal features of addiction is how long-lived it is," Dr. Nestler said. "A key question in the field has been: By what mechanisms do drugs of abuse cause changes in the brain that last this long?"

Researchers have hypothesized that one such mechanism could be regulation of gene expression and have shown that several transcription factors are regulated by drugs of abuse. This study, however, ventures a step further, providing evidence that histone changes on particular genes are a paramount part of the addiction process.

The researchers also showed that they could reduce or enhance cocaine’s behavioral effects in animals by directly and artificially influencing histone changes with different types of chemicals. One chemical modified histones in a way that increased the animals’ reward response from cocaine, while rats given a different type of chemical, which modified histones in another way, showed decreased rewarding effects.

"We are seeing for the first time how certain genes in the reward center of the brain are regulated by chromatin modifications," said Dr. Arvind Kumar, the study’s lead author and an instructor of psychiatry. "Now that we understand the mechanism of how these stable, cocaine-induced changes in the brain are regulated, this may help us find targets that can be manipulated for future treatment of cocaine addiction."

Other researchers from UT Southwestern’s Department of Psychiatry contributing to the study included Dr. Kwang-Ho Choi, instructor; William Renthal and Nadia Tsankova, Medical Scientist Training Program students; David Theobald and Kimberly Whisler, research associates; Teresa Sasaki and Hoang-Trang Truong, research assistants; Dr. Scott Russo, postdoctoral research fellow; Quincey LaPlant, graduate student fellow/medical student; and Dr. David Self, associate professor. A researcher from Harvard Medical School also contributed.

The study was supported by grants from the National Institute on Drug Abuse and the National Institute of Mental Health.

Donna Steph Hansard | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>