Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find alterations in brain’s circuitry caused by cocaine

24.10.2005


Cocaine causes specific alterations in the brain’s circuitry at a genetic level, including short-term changes that result in a high from the cocaine, as well as long-term changes seen in addiction, researchers from UT Southwestern Medical Center have found.



Such findings suggest possible new directions for treatments for addiction to the drug, they said.

In a study available online and in the Oct. 20 issue of Neuron, UT Southwestern researchers used rodents to pinpoint an important molecular mechanism that switches genes "on" in the part of the brain involved in drug-induced rewards. They also determined that cocaine, through a process called "chromatin remodeling," alters the normal biochemical processes that allow these specific genes to be turned on and off.


"Our study provides a fundamentally new level of analysis by which we can better understand the actions of cocaine in brain-reward regions at the molecular level," said senior author Dr. Eric Nestler, chairman of UT Southwestern’s Department of Psychiatry. "It also points to new potential treatments for addiction."

In order for genes to be activated, or "expressed," proteins called transcription factors have to be able to access the gene and copy its instructions for making other proteins. Typically, a group of proteins called histones tightly binds genes, keeping them from being accessed by transcription factors. Normally, histones undergo chemical changes to convert them from tightly binding a gene to a state where they
are less bound and no longer inhibit gene expression.

However, through chromatin remodeling - or modifying the genetic material located in the cell’s nucleus - cocaine chemically alters histones, causing them to loosen their "grip" on certain genes and allowing transcription factors to turn the genes on, the researchers found.

"Our study was the first to examine histone changes on particular genes in brain-reward regions known to be important for cocaine addiction," said Dr. Nestler, who holds the Lou and Ellen McGinley Distinguished Chair in Psychiatric Research. "We have shown that several genes known to be activated by acute or chronic cocaine use indeed show changes in histone chemical modifications that lead to the genes’ activation."

Another discovery was that chronic cocaine use causes chemical changes to a different type of histone than acute cocaine use does, which may help explain why the behavioral effects of acute versus chronic cocaine use in people are so different, Dr. Nestler said.

Researchers learned, through administering single doses and repeated doses of cocaine to groups of rats and mice, that some of the changes in histones caused by the drug are quite stable, lasting for more than a week after the last cocaine dosage. From that, they concluded that chronic cocaine use may cause long-lasting changes in the brain’s circuitry, whereas short-term use affects genes differently.

"One of the cardinal features of addiction is how long-lived it is," Dr. Nestler said. "A key question in the field has been: By what mechanisms do drugs of abuse cause changes in the brain that last this long?"

Researchers have hypothesized that one such mechanism could be regulation of gene expression and have shown that several transcription factors are regulated by drugs of abuse. This study, however, ventures a step further, providing evidence that histone changes on particular genes are a paramount part of the addiction process.

The researchers also showed that they could reduce or enhance cocaine’s behavioral effects in animals by directly and artificially influencing histone changes with different types of chemicals. One chemical modified histones in a way that increased the animals’ reward response from cocaine, while rats given a different type of chemical, which modified histones in another way, showed decreased rewarding effects.

"We are seeing for the first time how certain genes in the reward center of the brain are regulated by chromatin modifications," said Dr. Arvind Kumar, the study’s lead author and an instructor of psychiatry. "Now that we understand the mechanism of how these stable, cocaine-induced changes in the brain are regulated, this may help us find targets that can be manipulated for future treatment of cocaine addiction."

Other researchers from UT Southwestern’s Department of Psychiatry contributing to the study included Dr. Kwang-Ho Choi, instructor; William Renthal and Nadia Tsankova, Medical Scientist Training Program students; David Theobald and Kimberly Whisler, research associates; Teresa Sasaki and Hoang-Trang Truong, research assistants; Dr. Scott Russo, postdoctoral research fellow; Quincey LaPlant, graduate student fellow/medical student; and Dr. David Self, associate professor. A researcher from Harvard Medical School also contributed.

The study was supported by grants from the National Institute on Drug Abuse and the National Institute of Mental Health.

Donna Steph Hansard | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>