Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research: removal of dominant rivals causes male cichlid fish to undergo remarkable transformation

19.10.2005


In a new study of cichlid fish descended from others caught in East Africa’s Lake Tanganika, scientists have made some surprising observations about how those animals respond to changes in their environments known as "social opportunities."



Dr. Sabrina S. Burmeister, assistant professor of biology at the University of North Carolina at Chapel Hill’s College of Arts and Sciences, and colleagues found that subordinate male fish underwent a radical and rapid transformation when more dominant males were removed.

"When we took dominant cichlid males from an experimental tank, subordinate males started becoming dominant themselves in as few as two minutes," Burmeister said. "Their colors -- blue and yellow -- got much brighter, a black stripe we call an eye bar appeared near their eyes, and they became much more aggressive than they were before. The remaining males also quickly paid a lot more attention to females because for the first time, they had an opportunity to reproduce."


No one had any idea before that perceived changes in their social status could begin altering animals’ behavior and appearance so quickly, she said. Previous studies had shown the changes took as long as a week and were associated with increased fertility.

Burmeister’s report on her experiments, conducted at Stanford University, appears in the November issue of the scientific journal PloS Biology, which is being released today (Oct. 17). Co-authors are Drs. Erich D. Jarvis and Russell D. Fernald, neurobiologists at Duke University and Stanford, respectively.

The research is part of a larger effort to understand some of the most intriguing questions in all of biology -- how did brains evolve and how can the environment change an animal’s physiology through actions on its brain?

Such studies are relevant to humans since the hormones and genes involved are close to identical, she said. Obviously, such internal gene activity studies cannot be done directly in humans.

After observing the striking changes in appearance and personality, Burmeister and colleagues turned their attention to the inner workings of the fish’s gene-hormone interactions by analyzing brain tissue.

"The gene we focused on, egr-1, was a good candidate for study because it controls expression of other genes," Burmeister said. "We found that perception of social opportunity caused more egr-1 to be expressed in the hypothalamus, a region of the brain that controls fertility. We believe that in our fish, egr-1 turns on expression of a second gene, GnRH1, which produces a hormone necessary for reproduction."

The basic mechanisms that control reproduction in fish and in humans are the same and may be in all vertebrates, she said. The brain’s hypothalamus links the nervous system to hormonal systems.

"Reproductive physiology is often influenced by environmental factors, including social cues, the scientist said. "In humans, one of the best examples came from work by Dr. Martha McClintock showing that the menstrual cycles of women were influenced by olfactory cues from other women. Another group found that the timing of ovulation in women is influenced by olfactory cues from men."

In humans and many other mammals, olfactory cues -- various odors --provide important information about the social environment, Burmeister said. The situations are analogous -- social cues from the environment influence the reproductive system through GnRH neurons and create a "cascade" of molecular interactions that result in increased fertility.

The National Institutes of Health and the National Science Foundation supported the research.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>