Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research: removal of dominant rivals causes male cichlid fish to undergo remarkable transformation

19.10.2005


In a new study of cichlid fish descended from others caught in East Africa’s Lake Tanganika, scientists have made some surprising observations about how those animals respond to changes in their environments known as "social opportunities."



Dr. Sabrina S. Burmeister, assistant professor of biology at the University of North Carolina at Chapel Hill’s College of Arts and Sciences, and colleagues found that subordinate male fish underwent a radical and rapid transformation when more dominant males were removed.

"When we took dominant cichlid males from an experimental tank, subordinate males started becoming dominant themselves in as few as two minutes," Burmeister said. "Their colors -- blue and yellow -- got much brighter, a black stripe we call an eye bar appeared near their eyes, and they became much more aggressive than they were before. The remaining males also quickly paid a lot more attention to females because for the first time, they had an opportunity to reproduce."


No one had any idea before that perceived changes in their social status could begin altering animals’ behavior and appearance so quickly, she said. Previous studies had shown the changes took as long as a week and were associated with increased fertility.

Burmeister’s report on her experiments, conducted at Stanford University, appears in the November issue of the scientific journal PloS Biology, which is being released today (Oct. 17). Co-authors are Drs. Erich D. Jarvis and Russell D. Fernald, neurobiologists at Duke University and Stanford, respectively.

The research is part of a larger effort to understand some of the most intriguing questions in all of biology -- how did brains evolve and how can the environment change an animal’s physiology through actions on its brain?

Such studies are relevant to humans since the hormones and genes involved are close to identical, she said. Obviously, such internal gene activity studies cannot be done directly in humans.

After observing the striking changes in appearance and personality, Burmeister and colleagues turned their attention to the inner workings of the fish’s gene-hormone interactions by analyzing brain tissue.

"The gene we focused on, egr-1, was a good candidate for study because it controls expression of other genes," Burmeister said. "We found that perception of social opportunity caused more egr-1 to be expressed in the hypothalamus, a region of the brain that controls fertility. We believe that in our fish, egr-1 turns on expression of a second gene, GnRH1, which produces a hormone necessary for reproduction."

The basic mechanisms that control reproduction in fish and in humans are the same and may be in all vertebrates, she said. The brain’s hypothalamus links the nervous system to hormonal systems.

"Reproductive physiology is often influenced by environmental factors, including social cues, the scientist said. "In humans, one of the best examples came from work by Dr. Martha McClintock showing that the menstrual cycles of women were influenced by olfactory cues from other women. Another group found that the timing of ovulation in women is influenced by olfactory cues from men."

In humans and many other mammals, olfactory cues -- various odors --provide important information about the social environment, Burmeister said. The situations are analogous -- social cues from the environment influence the reproductive system through GnRH neurons and create a "cascade" of molecular interactions that result in increased fertility.

The National Institutes of Health and the National Science Foundation supported the research.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>