Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research: removal of dominant rivals causes male cichlid fish to undergo remarkable transformation

19.10.2005


In a new study of cichlid fish descended from others caught in East Africa’s Lake Tanganika, scientists have made some surprising observations about how those animals respond to changes in their environments known as "social opportunities."



Dr. Sabrina S. Burmeister, assistant professor of biology at the University of North Carolina at Chapel Hill’s College of Arts and Sciences, and colleagues found that subordinate male fish underwent a radical and rapid transformation when more dominant males were removed.

"When we took dominant cichlid males from an experimental tank, subordinate males started becoming dominant themselves in as few as two minutes," Burmeister said. "Their colors -- blue and yellow -- got much brighter, a black stripe we call an eye bar appeared near their eyes, and they became much more aggressive than they were before. The remaining males also quickly paid a lot more attention to females because for the first time, they had an opportunity to reproduce."


No one had any idea before that perceived changes in their social status could begin altering animals’ behavior and appearance so quickly, she said. Previous studies had shown the changes took as long as a week and were associated with increased fertility.

Burmeister’s report on her experiments, conducted at Stanford University, appears in the November issue of the scientific journal PloS Biology, which is being released today (Oct. 17). Co-authors are Drs. Erich D. Jarvis and Russell D. Fernald, neurobiologists at Duke University and Stanford, respectively.

The research is part of a larger effort to understand some of the most intriguing questions in all of biology -- how did brains evolve and how can the environment change an animal’s physiology through actions on its brain?

Such studies are relevant to humans since the hormones and genes involved are close to identical, she said. Obviously, such internal gene activity studies cannot be done directly in humans.

After observing the striking changes in appearance and personality, Burmeister and colleagues turned their attention to the inner workings of the fish’s gene-hormone interactions by analyzing brain tissue.

"The gene we focused on, egr-1, was a good candidate for study because it controls expression of other genes," Burmeister said. "We found that perception of social opportunity caused more egr-1 to be expressed in the hypothalamus, a region of the brain that controls fertility. We believe that in our fish, egr-1 turns on expression of a second gene, GnRH1, which produces a hormone necessary for reproduction."

The basic mechanisms that control reproduction in fish and in humans are the same and may be in all vertebrates, she said. The brain’s hypothalamus links the nervous system to hormonal systems.

"Reproductive physiology is often influenced by environmental factors, including social cues, the scientist said. "In humans, one of the best examples came from work by Dr. Martha McClintock showing that the menstrual cycles of women were influenced by olfactory cues from other women. Another group found that the timing of ovulation in women is influenced by olfactory cues from men."

In humans and many other mammals, olfactory cues -- various odors --provide important information about the social environment, Burmeister said. The situations are analogous -- social cues from the environment influence the reproductive system through GnRH neurons and create a "cascade" of molecular interactions that result in increased fertility.

The National Institutes of Health and the National Science Foundation supported the research.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>