Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research: removal of dominant rivals causes male cichlid fish to undergo remarkable transformation

19.10.2005


In a new study of cichlid fish descended from others caught in East Africa’s Lake Tanganika, scientists have made some surprising observations about how those animals respond to changes in their environments known as "social opportunities."



Dr. Sabrina S. Burmeister, assistant professor of biology at the University of North Carolina at Chapel Hill’s College of Arts and Sciences, and colleagues found that subordinate male fish underwent a radical and rapid transformation when more dominant males were removed.

"When we took dominant cichlid males from an experimental tank, subordinate males started becoming dominant themselves in as few as two minutes," Burmeister said. "Their colors -- blue and yellow -- got much brighter, a black stripe we call an eye bar appeared near their eyes, and they became much more aggressive than they were before. The remaining males also quickly paid a lot more attention to females because for the first time, they had an opportunity to reproduce."


No one had any idea before that perceived changes in their social status could begin altering animals’ behavior and appearance so quickly, she said. Previous studies had shown the changes took as long as a week and were associated with increased fertility.

Burmeister’s report on her experiments, conducted at Stanford University, appears in the November issue of the scientific journal PloS Biology, which is being released today (Oct. 17). Co-authors are Drs. Erich D. Jarvis and Russell D. Fernald, neurobiologists at Duke University and Stanford, respectively.

The research is part of a larger effort to understand some of the most intriguing questions in all of biology -- how did brains evolve and how can the environment change an animal’s physiology through actions on its brain?

Such studies are relevant to humans since the hormones and genes involved are close to identical, she said. Obviously, such internal gene activity studies cannot be done directly in humans.

After observing the striking changes in appearance and personality, Burmeister and colleagues turned their attention to the inner workings of the fish’s gene-hormone interactions by analyzing brain tissue.

"The gene we focused on, egr-1, was a good candidate for study because it controls expression of other genes," Burmeister said. "We found that perception of social opportunity caused more egr-1 to be expressed in the hypothalamus, a region of the brain that controls fertility. We believe that in our fish, egr-1 turns on expression of a second gene, GnRH1, which produces a hormone necessary for reproduction."

The basic mechanisms that control reproduction in fish and in humans are the same and may be in all vertebrates, she said. The brain’s hypothalamus links the nervous system to hormonal systems.

"Reproductive physiology is often influenced by environmental factors, including social cues, the scientist said. "In humans, one of the best examples came from work by Dr. Martha McClintock showing that the menstrual cycles of women were influenced by olfactory cues from other women. Another group found that the timing of ovulation in women is influenced by olfactory cues from men."

In humans and many other mammals, olfactory cues -- various odors --provide important information about the social environment, Burmeister said. The situations are analogous -- social cues from the environment influence the reproductive system through GnRH neurons and create a "cascade" of molecular interactions that result in increased fertility.

The National Institutes of Health and the National Science Foundation supported the research.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>