Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest single-institution study demonstrates Mammosite is a safe breast cancer treatment

19.10.2005


Treating breast cancer with MammoSite® resulted in a low risk of complications and was generally well tolerated, according to a University of Pittsburgh School of Medicine study presented today at the 47th annual meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Denver.



MammoSite, a type of breast brachytherapy (bray-kee-therapy), uses a single catheter inserted into the breast following lumpectomy, or surgical removal of a tumor, to deliver a high dose of radiation. Once the catheter is inserted, a tiny balloon is inflated and loaded with radioactive seeds that deliver prescribed levels of radiation to targeted tissue surrounding the tumor site.

"MammoSite is a type of partial breast irradiation that delivers radiation from the inside of the breast directly to the tumor site where cancer cells are most likely to reside," said Sushil Beriwal, M.D., assistant professor at the University of Pittsburgh School of Medicine and medical director of radiation oncology at Magee-Womens Hospital of the University of Pittsburgh Medical Center (UPMC). "Ours is one of the largest single-institution studies to confirm that it does this safely and with an acceptable level of toxicity."


The study, which was designed to evaluate early outcomes of MammoSite brachytherapy, and was approved by the FDA in 2002, evaluated toxicity in 100 patients treated between June 2002 and October 2004 at the University of Pittsburgh Cancer Institute. The patients were followed between three and 30 months subsequent to treatment with an average follow-up time of one year. After treatment, patients were assessed at one week, one month and at three-month intervals. While 14 percent of women had to have the catheter removed because of various reasons, the majority of the patients (86 percent) underwent treatment.

Post-treatment complications included balloon rupture, infections, skin toxicity and seromas (persistence of the cavity where the lump was removed). Study results indicated that balloon rupture occurred in six patients (7 percent) and wound infections occurred in 10 patients (12 percent). No patients had serious skin toxicities from treatment. A palpable seroma was observed in 34 of the patients (40 percent) and persisted beyond six months of treatment in 22 patients (26 percent).

The study also evaluated cosmetic outcome of MammoSite treatment. Cosmetic outcome refers to the physical similarity between the treated breast and the untreated breast. Forty-eight patients (56 percent) had excellent cosmetic outcomes; 32 patients (37 percent) had good cosmetic outcomes; and seven patients (7 percent) had fair cosmetic outcomes.

"Our findings demonstrate that the toxicities associated with MammoSite were similar to results reported in the MammoSite brachytherapy registry trial," said Dr. Beriwal. "The complications were acceptable and the cosmetic outcome was comparable to what we might see with standard external beam radiation." Dr. Beriwal added that follow-up studies will seek to assess the long-term effects as well as the efficacy of the treatment compared with standard external beam radiation therapy and other types of breast brachytherapy.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>