Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New stem cell transplantation technique may match donor for every patient

18.10.2005


New studies unveiled at bone marrow failure symposium



The following studies on bone marrow failure diseases will be presented at the Bone Marrow Failure Scientific Symposium Oct. 18-19, L’Enfant Plaza Hotel in Washington, DC. Organized by the Aplastic Anemia & MDS International Foundation, Inc. (AA&MDSIF), the symposium is sponsored by the National Institutes of Health, including the Office of Rare Diseases, the National Heart, Lung and Blood Institute and the National Cancer Institute.

New Stem Cell Transplantation Technique May Match Donor For Every Patient


A new stem cell technology may greatly expand the donor pool for a variety of malignant and nonmalignant disorders, including bone marrow diseases. By using novel graft engineering technologies, a stem cell donor may be matched for almost every patient that needs one. There is currently only a 25 percent chance of finding a matched donor within the average nuclear family; many ethnic groups have less than a 10 percent chance. The technologies, developed by researchers at St. Jude Children’s Research Hospital in Memphis and Children’s University Hospital Tuebingen in Germany, allow HLA (genetic markers determining people’s tissue types) mismatched and haploidentical (incompatible) stem cell donors into the donor pool and improve the outcome of stem cell transplantation by manipulating the graft according to the patient’s underlying disease. Researchers performed either positive stem cell selection strategies or negative depletion of graft-versus-host inducing T-cells. The novel negative depletion strategy of mobilized peripheral haploidentical stem cells was performed for the first time by the research team.
The Role of Graft Engineering in Transplantation
Rupert Handgretinger, M.D., St. Jude Children’s Research Hospital, Memphis, TN.
Tuesday, Oct. 18, 8:45 AM

Rates of Aplastic Anemia in Thailand Far Exceed the West

The incidence of aplastic anemia in Thailand is two to three times higher than in the West, according to a new study by researchers at Siriraj Hospital, Mahidol University in Bangkok, Thailand. The new study supports the long-held belief that rates of aplastic anemia are far greater in Asia than in Western countries. An incidence and case-controlled study, partly supported by the National Heart, Lung, and Blood Institute, enrolled 541 patients and 2261 controls in Bangkok and Khonkaen. Some chemicals and drugs, especially exposure to benzene, sulfonamides, thiazides and mebendazole, were associated with aplastic anemia but their use could not account for the greater number of cases. In the countryside, the use of agricultural pesticides, including DDT, organophosphates and carbamates, was a risk factor; other unexpected risk factors were exposure to ducks and geese drinking other than bottled or distilled water--suggestive of an infectious cause for bone marrow failure.
Aplastic Anemia in the Orient
Surapol Issaragrisil, M.D., Siriraj Hospital, Mahidol University, Bangkok, Thailand
Wednesday, Oct. 19, 10:30 AM

Genetic Risk Factors Identified For Aplastic Anemia

Researchers at NIH’s National Heart, Lung and Blood Institute have identified genetic risk factors for acquired aplastic anemia that affect both the immune response and hematopoietic cell number and function. The class II histocompatability antigen HLA-DR2 is more prevalent in Asian and Western patients and may correlate with responsiveness to immunosuppressive therapies. Alterations in certain cytokine genes were found to be more prevalent among bone marrow failure patients. More recently, genetic studies have been performed of families of patients who had apparently acquired aplastic anemia as adults and lacked the physical abnormalities or a family history typical of inherited forms of bone marrow failure. Multiple pedigrees were defined in whom patients and relatives had mutations in genes called TERC and TERT. These genes are of critical importance in telomere repair: telomeres are the caps at the end of chromosomes that shorten with each cell division. Telomeres and telomere repair are fundamental to cell senescence, to aging in general, and to the development of cancer. These results provide a link between a basic biologic process and the failed bone marrow, and their identification in individual patients profoundly affects treatment and outcome.
Genetic Risk Factors for Bone Marrow Failure
Neal S. Young, M.D., National Heart, Lung and Blood Institute, Bethesda, MD.
Wednesday, Oct. 19, 10:30 AM

The Bone Marrow Failure Scientific Symposium is presenting the latest advances in aplastic anemia, myelodysplastic syndromes (MDS), paroxysmal nocturnal hemoglobinuria (PNH) and other bone marrow failure diseases. This is the first international meeting covering all bone marrow diseases--life-threatening conditions for which, in most cases, the cause is unknown.

New research on stem cell transplantation, immunosuppressive treatments, drug therapies and alternative approaches will be presented by the world’s leading physicians on bone marrow failure diseases.

Brian Ruberry | EurekAlert!
Further information:
http://www.allhealthpr.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>