Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds protein is required for human chromosome production

13.10.2005


Scientists at the University of North Carolina at Chapel Hill School of Medicine have identified an elusive protein that performs a necessary step in the production of human chromosomes.

The new study appears in the most recent issue (Oct. 7) of the journal Cell.

The study found that a protein called CPSF73 acts like scissors to cut strands of histone messenger RNA (mRNA) in the cell nucleus. This cutting action produces the mRNA needed to create histone proteins that combine with DNA to form chromosomes.



Like all other proteins, histones are made when a specialized RNA molecule is "read" by ribosomes, the cell’s protein factories. The type of RNA, which relays information from the DNA (inside the nucleus) to the ribosome (outside the nucleus), is called messenger RNA.

RNA that is not cut by CPSF73 is destroyed in the nucleus and never becomes messenger RNA, said Dr. William Marzluff, senior author of the study and Kenan distinguished professor of biochemistry and biophysics in UNC’s School of Medicine.

"This cutting of histone messenger RNA takes place as growing cells prepare to divide and is absolutely necessary for their eventual division," Marzluff said. Histone proteins help organize and compact within the nucleus the 6 billion nucleotides, or DNA bases, that make up the human genome – combinations of "A’s," "T’s," "G’s" and "C’s." Without histones, cells cannot survive.

Dr. Zbigniew Dominski, associate professor of biochemistry and biophysics, has been searching for the protein that cuts histone messenger RNA since joining forces with Marzluff 10 years ago. He is the corresponding and lead author of the study.

When RNA is first made from DNA, it is premature and cannot direct the synthesis of its corresponding protein until it is processed into mature messenger RNA, which includes being cut at a specific site, Dominski said.

"This is a very complex process that requires many proteins to bind to the RNA molecule and show the cutting enzyme where to cleave the RNA," he added.

Dominski was able to duplicate, in a test tube, the histone mRNA processing that takes place normally inside a cell’s nucleus. However, the RNA cutting reaction was so quick that he was unable to determine which of the countless proteins inside the test tube was responsible.

"We set a trap by subtly changing the chemical makeup of the histone messenger RNA right where it is cut. This allows the protein to still come to the RNA but forces it to cut more slowly," Dominski said.

By slowing down the reaction, Dominski had enough time to irreversibly attach the RNA cutting protein, or nuclease, to the RNA itself using ultraviolet light as a cross-linking agent. Once attached to the RNA, the long-sought-after nuclease was trapped, allowing its subsequent identification.

The discovery that the RNA cutting protein is CPSF73 was unexpected. This protein was already connected with processing of a completely different class of messenger RNA, polyadenylated mRNAs. These messenger RNAs serve as blueprints for all proteins other than the histones. "In terms of evolution, all messenger RNAs appear to be made with the aid of the same protein, CPSF73," Marzluff said. "This suggests that the two mRNA processing mechanisms, for polyadenylated and histone mRNAs, are distantly related."

The authors further demonstrate that CPSF73 not only cuts the histone messenger RNA molecule in two, but also then chews the unneeded portion of the histone mRNA molecule into pieces. It is rare to find two such activities within a single protein, Dominski said.

"From the point of view of understanding biology, our findings provide a unified mechanism for the synthesis of all messenger RNAs," Marzluff said.

UNC School of Medicine technician and co-author Xiao-cui Yang assisted Dominski and Marzluff in this study. Their work was supported by a grant from the National Institutes of Health.

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>