Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study proves genetic variations influence cystic fibrosis’ severity

06.10.2005


Subtle differences in other genes -- besides the defective gene known to cause the illness cystic fibrosis -- can significantly modify the inherited disease’s severity, a large new multi-center national study has concluded.



The study, led by University of North Carolina at Chapel Hill and Case Western Reserve University researchers, for the first time shows that particular versions of the transforming growth factor beta 1 (TGFb1) gene are largely responsible for how badly the illness affects patients’ lungs.

A report on the findings appears in the Oct. 6 issue of the New England Journal of Medicine.


"As this gene is one of about 30,000 genes in our bodies, its identification as a modifier of the CF lung disease allows us a specific target to focus on for improving CF therapy," said Dr. Mitchell L. Drumm, associate professor of pediatrics and genetics at Case. "As we better understand its function in lung disease, we hope it will allow us to design better and more specific therapies. Because other researchers have found a similar effect of this gene in asthma, the implications likely extend to other disorders affecting the lungs as well."

More than 50 hospitals and medical centers and scores of physicians across the United States and Canada participated in the investigation, which was actually two closely related studies with separate groups of patients. Findings were essentially the same for both, according to principal investigator Dr. Michael R. Knowles, professor of medicine at the UNC School of Medicine.

"This study is especially important in the field of genetic modifiers, because we had enough patients -- over 1,300 -- and a robust study design to assure that our observation is likely correct," Knowles said. "That is in contrast to much of the previous work in this area where the number of subjects was usually too small to be conclusive.

"The observation has tremendous implications about the future for prognosis and potential new therapies in CF," he said. "We are on the verge in the next two or three years of being able to test for other such genetic variants across the entire human genome. Our hope is to be able to identify most of the important gene modifiers in CF so that they can be used for prognosis, the identification of novel therapeutic targets and perhaps even directing therapy in an individual patients toward different types of adverse gene modifiers."

Initially, the study involved 808 cystic fibrosis patients who had inherited an altered form of a gene known as delta F508 from both parents. The second study involved 498 people with the condition. By measuring the volume of air when patients’ exhaled strongly into a machine, researchers determined how severe each subject’s lung disease was.

Scientists then correlated patients’ level of illness against various genetic mutations and found that variants of a gene known as TGFb1 were associated with worse disease. The findings appear to exonerate certain other previously suspected mutations.

Besides Drumm and Knowles, authors of the report include Drs. Fred A. Wright and Fei Zou, associate professor and assistant professor of biostatistics, respectively, at the UNC School of Public Health, and, at Case, Drs. Mark D. Schluchter and Michael Konstan, professors of pediatrics; and Dr. Katrina Goddard, associate professor of epidemiology and biostatistics. Thirteen other scientists and clinicians also contributed to the work and were listed as co-authors.

In an accompanying editorial, Drs. Christina K. Haston and Thomas J. Hudson of McGill University in Montreal praised the new study.

"There are many lessons about modifier genes to be extrapolated from this study, starting with recognition of the tremendous importance of the study design," Haston and Hudson wrote.

Among its strengths, they said, were its large size -- which is essential for such studies if they are to be useful -- that it focused on a single class of gene variation and that it took into account numerous possible confounders such as sex, other illnesses like asthmas, enrollment sites, associated diseases and infections.

"There are likely a number of gene modifiers in CF and other diseases, and this current paper describes one of the first robust examples," Knowles said. "Some CF patients may do worse because of ’severe inflammation’ genes, whereas others may do worse because of differences in mucus genes. Still others might because of their growth and metabolism genes, etc... Thus, therapy might need to be targeted to a particular area or areas in individual patients. This is important not only for CF, but for other lung diseases as well because gene modifiers we discover in CF will be seen in other diseases, and there are already examples of that."

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>