Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study proves genetic variations influence cystic fibrosis’ severity

06.10.2005


Subtle differences in other genes -- besides the defective gene known to cause the illness cystic fibrosis -- can significantly modify the inherited disease’s severity, a large new multi-center national study has concluded.



The study, led by University of North Carolina at Chapel Hill and Case Western Reserve University researchers, for the first time shows that particular versions of the transforming growth factor beta 1 (TGFb1) gene are largely responsible for how badly the illness affects patients’ lungs.

A report on the findings appears in the Oct. 6 issue of the New England Journal of Medicine.


"As this gene is one of about 30,000 genes in our bodies, its identification as a modifier of the CF lung disease allows us a specific target to focus on for improving CF therapy," said Dr. Mitchell L. Drumm, associate professor of pediatrics and genetics at Case. "As we better understand its function in lung disease, we hope it will allow us to design better and more specific therapies. Because other researchers have found a similar effect of this gene in asthma, the implications likely extend to other disorders affecting the lungs as well."

More than 50 hospitals and medical centers and scores of physicians across the United States and Canada participated in the investigation, which was actually two closely related studies with separate groups of patients. Findings were essentially the same for both, according to principal investigator Dr. Michael R. Knowles, professor of medicine at the UNC School of Medicine.

"This study is especially important in the field of genetic modifiers, because we had enough patients -- over 1,300 -- and a robust study design to assure that our observation is likely correct," Knowles said. "That is in contrast to much of the previous work in this area where the number of subjects was usually too small to be conclusive.

"The observation has tremendous implications about the future for prognosis and potential new therapies in CF," he said. "We are on the verge in the next two or three years of being able to test for other such genetic variants across the entire human genome. Our hope is to be able to identify most of the important gene modifiers in CF so that they can be used for prognosis, the identification of novel therapeutic targets and perhaps even directing therapy in an individual patients toward different types of adverse gene modifiers."

Initially, the study involved 808 cystic fibrosis patients who had inherited an altered form of a gene known as delta F508 from both parents. The second study involved 498 people with the condition. By measuring the volume of air when patients’ exhaled strongly into a machine, researchers determined how severe each subject’s lung disease was.

Scientists then correlated patients’ level of illness against various genetic mutations and found that variants of a gene known as TGFb1 were associated with worse disease. The findings appear to exonerate certain other previously suspected mutations.

Besides Drumm and Knowles, authors of the report include Drs. Fred A. Wright and Fei Zou, associate professor and assistant professor of biostatistics, respectively, at the UNC School of Public Health, and, at Case, Drs. Mark D. Schluchter and Michael Konstan, professors of pediatrics; and Dr. Katrina Goddard, associate professor of epidemiology and biostatistics. Thirteen other scientists and clinicians also contributed to the work and were listed as co-authors.

In an accompanying editorial, Drs. Christina K. Haston and Thomas J. Hudson of McGill University in Montreal praised the new study.

"There are many lessons about modifier genes to be extrapolated from this study, starting with recognition of the tremendous importance of the study design," Haston and Hudson wrote.

Among its strengths, they said, were its large size -- which is essential for such studies if they are to be useful -- that it focused on a single class of gene variation and that it took into account numerous possible confounders such as sex, other illnesses like asthmas, enrollment sites, associated diseases and infections.

"There are likely a number of gene modifiers in CF and other diseases, and this current paper describes one of the first robust examples," Knowles said. "Some CF patients may do worse because of ’severe inflammation’ genes, whereas others may do worse because of differences in mucus genes. Still others might because of their growth and metabolism genes, etc... Thus, therapy might need to be targeted to a particular area or areas in individual patients. This is important not only for CF, but for other lung diseases as well because gene modifiers we discover in CF will be seen in other diseases, and there are already examples of that."

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>