Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study proves genetic variations influence cystic fibrosis’ severity

06.10.2005


Subtle differences in other genes -- besides the defective gene known to cause the illness cystic fibrosis -- can significantly modify the inherited disease’s severity, a large new multi-center national study has concluded.



The study, led by University of North Carolina at Chapel Hill and Case Western Reserve University researchers, for the first time shows that particular versions of the transforming growth factor beta 1 (TGFb1) gene are largely responsible for how badly the illness affects patients’ lungs.

A report on the findings appears in the Oct. 6 issue of the New England Journal of Medicine.


"As this gene is one of about 30,000 genes in our bodies, its identification as a modifier of the CF lung disease allows us a specific target to focus on for improving CF therapy," said Dr. Mitchell L. Drumm, associate professor of pediatrics and genetics at Case. "As we better understand its function in lung disease, we hope it will allow us to design better and more specific therapies. Because other researchers have found a similar effect of this gene in asthma, the implications likely extend to other disorders affecting the lungs as well."

More than 50 hospitals and medical centers and scores of physicians across the United States and Canada participated in the investigation, which was actually two closely related studies with separate groups of patients. Findings were essentially the same for both, according to principal investigator Dr. Michael R. Knowles, professor of medicine at the UNC School of Medicine.

"This study is especially important in the field of genetic modifiers, because we had enough patients -- over 1,300 -- and a robust study design to assure that our observation is likely correct," Knowles said. "That is in contrast to much of the previous work in this area where the number of subjects was usually too small to be conclusive.

"The observation has tremendous implications about the future for prognosis and potential new therapies in CF," he said. "We are on the verge in the next two or three years of being able to test for other such genetic variants across the entire human genome. Our hope is to be able to identify most of the important gene modifiers in CF so that they can be used for prognosis, the identification of novel therapeutic targets and perhaps even directing therapy in an individual patients toward different types of adverse gene modifiers."

Initially, the study involved 808 cystic fibrosis patients who had inherited an altered form of a gene known as delta F508 from both parents. The second study involved 498 people with the condition. By measuring the volume of air when patients’ exhaled strongly into a machine, researchers determined how severe each subject’s lung disease was.

Scientists then correlated patients’ level of illness against various genetic mutations and found that variants of a gene known as TGFb1 were associated with worse disease. The findings appear to exonerate certain other previously suspected mutations.

Besides Drumm and Knowles, authors of the report include Drs. Fred A. Wright and Fei Zou, associate professor and assistant professor of biostatistics, respectively, at the UNC School of Public Health, and, at Case, Drs. Mark D. Schluchter and Michael Konstan, professors of pediatrics; and Dr. Katrina Goddard, associate professor of epidemiology and biostatistics. Thirteen other scientists and clinicians also contributed to the work and were listed as co-authors.

In an accompanying editorial, Drs. Christina K. Haston and Thomas J. Hudson of McGill University in Montreal praised the new study.

"There are many lessons about modifier genes to be extrapolated from this study, starting with recognition of the tremendous importance of the study design," Haston and Hudson wrote.

Among its strengths, they said, were its large size -- which is essential for such studies if they are to be useful -- that it focused on a single class of gene variation and that it took into account numerous possible confounders such as sex, other illnesses like asthmas, enrollment sites, associated diseases and infections.

"There are likely a number of gene modifiers in CF and other diseases, and this current paper describes one of the first robust examples," Knowles said. "Some CF patients may do worse because of ’severe inflammation’ genes, whereas others may do worse because of differences in mucus genes. Still others might because of their growth and metabolism genes, etc... Thus, therapy might need to be targeted to a particular area or areas in individual patients. This is important not only for CF, but for other lung diseases as well because gene modifiers we discover in CF will be seen in other diseases, and there are already examples of that."

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>