Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study casts doubt on ’Snowball Earth’ theory

30.09.2005


Remains of photosynthesizing microbes in prehistoric rocks suggest Earth was not ice-bound



A study that applied innovative techniques to previously unexamined rock formations has turned up strong evidence on the "Slushball Earth" side of a decades-long scientific argument.

The study appears in the Sept. 29 Science Express. The lead author is Alison Olcott, a Ph.D. student of earth sciences in the USC College of Letters, Arts and Sciences.


Geologists agree that prehistoric Earth was locked in a deep freeze during Precambrian times, about 750 to 600 million years ago. They disagree over the severity of the glaciation.

"Snowball Earth" proponents, who say that Earth’s oceans were covered by thick ice, explain the survival of life by hypothesizing the existence of small warm spots, or refugia.

On the other side are supporters of a "Slushball Earth" that would have included large areas of thin ice or open ocean, particularly around the equator.

The debate has tended to revolve around the same rock samples and analytical techniques, Olcott said. So she and her team focused on a drill core of little-known black shale deposits from southeastern Brazil and applied lipid biomarker techniques to identify prehistoric organisms based on the fatty remains of their cell membranes.

The team, which included scientists from USC, Caltech, the University of Maryland and a Brazilian mining company, identified "a complex and productive microbial ecosystem," including photosynthesizing organisms that could not have existed under a thick layer of ice.

"If there was ice, it had to have been thin enough that organisms could photosynthesize below it or within it," Olcott said.

Frank Corsetti of the USC College, one of Olcott’s advisers and a co-author on the paper, said: "What she has provided is the first real evidence that substantial photosynthesis occurred in the Earth’s oceans during the extreme ice age 700 million years ago, which is a challenge for the snowball theory."

The evidence from the drill core does not prove that large parts of the ocean remained free of sheet ice during the pre-Cambrian glaciation. It is statistically unlikely but possible, Olcott said, that the drill core found one of the tiny "refugia" for marine life whose existence is allowed under the "Snowball Earth" hypothesis.

But, she said, "finding the one anomalous spot would be quite unlikely," adding that the drill core came from an extensive formation of rocks with similar characteristics.

"At what point does an enormous refugium become open ocean?" she asked.

Skeptics also may argue that the rocks do not necessarily date to a glacial era, Olcott said. But her team found evidence of glacial activity in the samples, such as dropstones (continental rocks dropped by melting glaciers into marine deposits) and glendonites (minerals that only form in near-freezing water).

Objections aside, the paper’s main contribution may be the application of new techniques to an old chestnut.

"Geologists don’t necessarily think of looking for traces of microbes left in the rocks. This is the first direct look at the ecosystem during this time period," said Olcott, who credited USC’s geobiology program, one of a handful in the country, with influencing her thinking.

"They really try to synthesize between geology and biology. It was a new way to attack the problem."

Corsetti agrees. "The climate of collaboration between geologists and biologists," he said, "is unusually good at USC … it was this way of thinking that provided the impetus for the project in the first place."

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>