Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study casts doubt on ’Snowball Earth’ theory


Remains of photosynthesizing microbes in prehistoric rocks suggest Earth was not ice-bound

A study that applied innovative techniques to previously unexamined rock formations has turned up strong evidence on the "Slushball Earth" side of a decades-long scientific argument.

The study appears in the Sept. 29 Science Express. The lead author is Alison Olcott, a Ph.D. student of earth sciences in the USC College of Letters, Arts and Sciences.

Geologists agree that prehistoric Earth was locked in a deep freeze during Precambrian times, about 750 to 600 million years ago. They disagree over the severity of the glaciation.

"Snowball Earth" proponents, who say that Earth’s oceans were covered by thick ice, explain the survival of life by hypothesizing the existence of small warm spots, or refugia.

On the other side are supporters of a "Slushball Earth" that would have included large areas of thin ice or open ocean, particularly around the equator.

The debate has tended to revolve around the same rock samples and analytical techniques, Olcott said. So she and her team focused on a drill core of little-known black shale deposits from southeastern Brazil and applied lipid biomarker techniques to identify prehistoric organisms based on the fatty remains of their cell membranes.

The team, which included scientists from USC, Caltech, the University of Maryland and a Brazilian mining company, identified "a complex and productive microbial ecosystem," including photosynthesizing organisms that could not have existed under a thick layer of ice.

"If there was ice, it had to have been thin enough that organisms could photosynthesize below it or within it," Olcott said.

Frank Corsetti of the USC College, one of Olcott’s advisers and a co-author on the paper, said: "What she has provided is the first real evidence that substantial photosynthesis occurred in the Earth’s oceans during the extreme ice age 700 million years ago, which is a challenge for the snowball theory."

The evidence from the drill core does not prove that large parts of the ocean remained free of sheet ice during the pre-Cambrian glaciation. It is statistically unlikely but possible, Olcott said, that the drill core found one of the tiny "refugia" for marine life whose existence is allowed under the "Snowball Earth" hypothesis.

But, she said, "finding the one anomalous spot would be quite unlikely," adding that the drill core came from an extensive formation of rocks with similar characteristics.

"At what point does an enormous refugium become open ocean?" she asked.

Skeptics also may argue that the rocks do not necessarily date to a glacial era, Olcott said. But her team found evidence of glacial activity in the samples, such as dropstones (continental rocks dropped by melting glaciers into marine deposits) and glendonites (minerals that only form in near-freezing water).

Objections aside, the paper’s main contribution may be the application of new techniques to an old chestnut.

"Geologists don’t necessarily think of looking for traces of microbes left in the rocks. This is the first direct look at the ecosystem during this time period," said Olcott, who credited USC’s geobiology program, one of a handful in the country, with influencing her thinking.

"They really try to synthesize between geology and biology. It was a new way to attack the problem."

Corsetti agrees. "The climate of collaboration between geologists and biologists," he said, "is unusually good at USC … it was this way of thinking that provided the impetus for the project in the first place."

Carl Marziali | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>