Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study casts doubt on ’Snowball Earth’ theory

30.09.2005


Remains of photosynthesizing microbes in prehistoric rocks suggest Earth was not ice-bound



A study that applied innovative techniques to previously unexamined rock formations has turned up strong evidence on the "Slushball Earth" side of a decades-long scientific argument.

The study appears in the Sept. 29 Science Express. The lead author is Alison Olcott, a Ph.D. student of earth sciences in the USC College of Letters, Arts and Sciences.


Geologists agree that prehistoric Earth was locked in a deep freeze during Precambrian times, about 750 to 600 million years ago. They disagree over the severity of the glaciation.

"Snowball Earth" proponents, who say that Earth’s oceans were covered by thick ice, explain the survival of life by hypothesizing the existence of small warm spots, or refugia.

On the other side are supporters of a "Slushball Earth" that would have included large areas of thin ice or open ocean, particularly around the equator.

The debate has tended to revolve around the same rock samples and analytical techniques, Olcott said. So she and her team focused on a drill core of little-known black shale deposits from southeastern Brazil and applied lipid biomarker techniques to identify prehistoric organisms based on the fatty remains of their cell membranes.

The team, which included scientists from USC, Caltech, the University of Maryland and a Brazilian mining company, identified "a complex and productive microbial ecosystem," including photosynthesizing organisms that could not have existed under a thick layer of ice.

"If there was ice, it had to have been thin enough that organisms could photosynthesize below it or within it," Olcott said.

Frank Corsetti of the USC College, one of Olcott’s advisers and a co-author on the paper, said: "What she has provided is the first real evidence that substantial photosynthesis occurred in the Earth’s oceans during the extreme ice age 700 million years ago, which is a challenge for the snowball theory."

The evidence from the drill core does not prove that large parts of the ocean remained free of sheet ice during the pre-Cambrian glaciation. It is statistically unlikely but possible, Olcott said, that the drill core found one of the tiny "refugia" for marine life whose existence is allowed under the "Snowball Earth" hypothesis.

But, she said, "finding the one anomalous spot would be quite unlikely," adding that the drill core came from an extensive formation of rocks with similar characteristics.

"At what point does an enormous refugium become open ocean?" she asked.

Skeptics also may argue that the rocks do not necessarily date to a glacial era, Olcott said. But her team found evidence of glacial activity in the samples, such as dropstones (continental rocks dropped by melting glaciers into marine deposits) and glendonites (minerals that only form in near-freezing water).

Objections aside, the paper’s main contribution may be the application of new techniques to an old chestnut.

"Geologists don’t necessarily think of looking for traces of microbes left in the rocks. This is the first direct look at the ecosystem during this time period," said Olcott, who credited USC’s geobiology program, one of a handful in the country, with influencing her thinking.

"They really try to synthesize between geology and biology. It was a new way to attack the problem."

Corsetti agrees. "The climate of collaboration between geologists and biologists," he said, "is unusually good at USC … it was this way of thinking that provided the impetus for the project in the first place."

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>