Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frog peptides block HIV in lab study

29.09.2005


Novel study, finding, receive additional attention from American Foundation for AIDS Research

A new weapon in the battle against HIV may come from an unusual source -- a small tropical frog. Investigators at Vanderbilt University Medical Center reported this month in the Journal of Virology that compounds secreted by frog skin are potent blockers of HIV infection.

The findings could lead to topical treatments for preventing HIV transmission, and they reinforce the value of preserving the Earth’s biodiversity. "We need to protect these species long enough for us to understand their medicinal cabinet," said Louise A. Rollins-Smith, Ph.D., associate professor of Microbiology & Immunology, who has been studying the antimicrobial defenses of frogs for about six years. Frogs, she explained, have specialized granular glands in the skin that produce and store packets of peptides, small protein-like molecules. In response to skin injury or alarm, the frog secretes large amounts of these antimicrobial peptides onto the surface of the skin to combat pathogens like bacteria, fungi and viruses.



Rollins-Smith happens to have the laboratory next door to Derya Unutmaz, M.D., associate professor of Microbiology & Immunology. During a hallway chat one day, the two decided it would be interesting to investigate whether any frog peptides have activity against human viruses, specifically HIV, the focus of Unutmaz’s group.

Postdoctoral fellow Scott E. VanCompernolle, Ph.D., screened 15 antimicrobial peptides from a variety of frog species for their ability to block HIV infection of T cells, immune system cells targeted by HIV. He found several that inhibited HIV infection without harming the T cells.

The peptides appear to selectively kill the virus, perhaps by inserting themselves into the HIV outer membrane envelope and creating "holes" that cause the virus particle to fall apart, Unutmaz said. "We like to call these peptides WMDs -- weapons of membrane destruction," Unutmaz said. It is curious that the antimicrobial peptides do not harm the T cells at concentrations that are effective against the virus, he noted, since HIV’s outer membrane is derived from, and therefore essentially identical to, the cellular membrane. The investigators have proposed that the peptides act selectively on the virus in part because of its small size relative to cells.

The ability of the peptides to destroy HIV was enticing, but to be really effective as antimicrobial agents, they need to prevent transmission of HIV from dendritic cells to T cells, Unutmaz said.

Dendritic cells, he explained, are the sentinels of the immune system. They hang out in the mucosal surface tissues, scanning for invading pathogens. "Their purpose in life is to capture the enemy, bring it to the lymph node -- the command center -- and present it to the general, the T cell, to activate a battle plan," Unutmaz said. "It’s a very efficient system that has allowed us to survive many insults, pathogens and viruses."

But HIV is a wily foe. When it is picked up at the mucosal surface by a sentinel dendritic cell, it somehow evades destruction. Instead, it hides inside the cell, waiting to invade the T cell with a Trojan Horse-like mechanism. The ability of HIV to remain hidden in the dendritic cell, avoiding destruction by circulating antibodies and immune system cells, "may explain why after 20 years we don’t have a vaccine for this virus," Unutmaz said.

To test the effectiveness of the frog peptides in preventing HIV transmission, VanCompernolle first allowed cultured dendritic cells to capture active HIV. He then incubated the HIV-harboring dendritic cells with antimicrobial peptides, washed the peptides away, and added T cells.

"Normally the dendritic cell passes the virus to the T cell, and we get very efficient infection of the T cell," Unutmaz said. "But when we treated the dendritic cells with peptides, the virus was gone, completely gone.

"This was a great surprise."

The finding was puzzling, he added, since the prevailing notion is that HIV captured by dendritic cells is hidden and protected. The investigators currently are using imaging technologies to test the hypothesis that HIV is actually cycling to the dendritic cell surface.

"We think maybe it’s popping its head out, looking around for a T cell, and then going back inside to hide until it cycles out again," Unutmaz said. If peptide is present outside the cell, "it targets the virus that pops up and kills it." Preliminary experiments suggest that the hypothesis is correct.

"This is very exciting, as it suggests that these peptides could be very effective since the virus now has nowhere to hide," Unutmaz said. "And if this cycling is really happening, we may be able to generate a vaccine that will target virus captured by dendritic cells."

The frog peptides are an exceptional tool for probing "what the virus knows about the dendritic cell that we don’t know," Unutmaz added. "How does HIV manage to survive and cycle back and forth to the cell membrane? If we can understand that, we’ll find the gaps, and that will open a whole new universe of targets for intervention."

The investigators learned this week that the American Foundation for AIDS Research will fund their continuing quest to understand how the frog peptides kill HIV in dendritic cells. Their plans include imaging how the peptides work, screening additional frog peptides for activity, and testing peptides on a mucosal cell system to study the feasibility of developing them as prophylactics against HIV infection.

"If we are able to learn the mechanisms these peptides are using to kill HIV, it might be possible to make small chemical molecules that achieve the same results," Unutmaz said. Such chemicals would be more practical as therapeutic microbicides, he said. "This study is a great example of how collaboration across disciplines leads to big discoveries," Unutmaz said.

Other members of the Department of Microbiology and Immunology assisted the investigators by providing viruses for testing. The team found that membrane-coated viruses were susceptible to destruction by the frog peptides, but non-coated viruses, such as reovirus and adenovirus, were not affected.

R. Jeffery Taylor, Ph.D., Kyra Oswald-Richter, Ph.D., Jiyang Jiang, Ph.D., Bryan E Youree, M.D., Christopher R. Aiken, Ph.D., and Terence S. Dermody, M.D., at Vanderbilt are co-authors of the study. The research was supported by the National Institutes of Health, the Elizabeth B. Lamb Center for Pediatric Research, and the National Science Foundation.

SIDEBAR

NSF funds Vanderbilt University Medical Center study of amphibian decline
Researchers study frog peptides as anti-microbial agents, including HIV blockers

Frogs around the world are in trouble. And as species are lost, so are their biological treasures. The National Science Foundation has awarded a team of Vanderbilt University Medical Center investigators a four-year grant to study amphibian declines in Central America and California.

"Amphibian skin has long been favored in folklore for its medicinal properties," said Louise A. Rollins-Smith, Ph.D., associate professor of Microbiology & Immunology and principal investigator of the new grant. "Frogs are a rich source of potentially useful molecules that might work against human pathogens."

Rollins-Smith collaborated with Derya Unutmaz, M.D., assistant professor of Microbiology & Immunology, and other Vanderbilt scientists to show this month that compounds from frog skin block HIV infection.

Frogs produce and secrete compounds called antimicrobial peptides to fight off bacteria, fungi and viruses that land on their skin, Rollins-Smith explained.

"Frogs have evolved over millennia to combat such pathogens, so we want to learn from the frog as much as we can about these molecules," she said.

With the new grant, Rollins-Smith and her team will be investigating the antimicrobial defenses of declining frog populations that are facing a particular skin fungus. Postdoctoral fellow Douglas C. Woodhams, Ph.D., will be traveling to sites in Panama and in California to collect samples of the skin peptides from affected frogs.

"Our goal is to study frog populations that are ahead of an epidemic of this fungus, and those that are behind an epidemic to see if the ones that have survived have beneficial protective peptides," Rollins-Smith said.

The Mass Spectrometry Research Center at Vanderbilt is particularly valuable to the team’s studies. Using mass spectrometry, it is possible to characterize the array of peptides in the samples and rapidly focus on and sequence those that might be antimicrobial. "We hope to figure out which species are most vulnerable to this fungal pathogen so that they can be the focus of greater conservation efforts," Rollins-Smith said.

The studies may also reveal new antimicrobial peptides which could be useful blockers of human pathogens, she added.

John Howser | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>