Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transmission of tuberculosis is linked to historical patterns of human migration

27.09.2005


Genghis Khan and his troops may have unwittingly used more than just brute military force to conquer entire nations and to establish the infamous Mongolian empire. A report in the October issue of Genome Research suggests that Genghis Khan’s invasions spanning the continent of Asia during the 13th century may have been a primary vehicle for the dissemination of one of the world’s most deadly diseases: tuberculosis.



In this study, a team of scientists led by Dr. Igor Mokrousov from St. Petersburg’s Pasteur Institute demonstrated that the evolutionary history of the causative agent of tuberculosis (TB) has been shaped by human migration patterns.

The researchers examined the genetic signatures of over 300 strains of Mycobacterium tuberculosis, rod-shaped bacteria that, when airborne, infect the pulmonary systems of vulnerable individuals and give rise to clinical TB. The World Health Organization (WHO) estimates that TB kills 5,000 people worldwide every day, or approximately 2 million people each year. The pathogen is rapidly spreading and evolving multi-drug resistant strains in susceptible regions such as Africa. Interestingly, a strong gender bias in TB infection is reported globally each year; a 70% excess of male TB cases is typical.


"M. tuberculosis also has a remarkable ability to persist in the human host as a latent, asymptomatic form," explains Mokrousov. "This is probably what permitted M. tuberculosis to co-exist with humans during pre-industrialized times, when the primary mode of transmission was within families or households where there was significant physical contact." Today, approximately one-third of the world’s population are carriers of latent TB.

Mokrousov’s team hypothesized that, given the strong gender bias of TB infectivity and the likely family-based mode of TB transmission during pre-industrialized times, M. tuberculosis dissemination has reflected the unidirectional inheritance of the paternally transmitted human Y chromosome. To test this hypothesis, the authors compared the genetic profiles of a common form of M. tuberculosis, called the Beijing genotype, with known patterns of prehistoric and recent human migrations, as well as with global patterns of Y-chromosome variation. Strikingly, they observed that over the past 60,000-100,000 years, the dispersal and evolution of M. tuberculosis appears to have precisely ebbed and flowed according to human migration patterns.

The authors describe how the Beijing genotype of M. tuberculosis originated in a specific human population called the K-M9 in central Asia approximately 30,000-40,000 years ago following a second "out of Africa" migration event. The bacteria and its human host then disseminated northeast into Siberia between 20,000-30,000 years ago and throughout eastern Asia between 4,000-10,000 years ago. More recently, the Beijing genotype of M. tuberculosis was introduced into northern Eurasia, perhaps by Genghis Khan himself during the 1200’s, and into South Africa, possibly through sea trade contacts with Indonesia or China during the last 300 years.

"The population structure of M. tuberculosis appears to have been shaped by the demographic history of its human carrier," explains Mokrousov, "but this is the opposite of what William McNeill suggested in 1976 in his famous book Plagues and Peoples, where he so popularly described how the growth and spread of infectious diseases such as the Black Death have influenced human history."

Mokrousov feels that these observations have important implications for tracing the evolutionary history of microorganisms. "The timing of hallmark changes in bacterial genomes within the last 100,000 years may be inferred from comparison with relevant human migrations," he says.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>