Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transmission of tuberculosis is linked to historical patterns of human migration


Genghis Khan and his troops may have unwittingly used more than just brute military force to conquer entire nations and to establish the infamous Mongolian empire. A report in the October issue of Genome Research suggests that Genghis Khan’s invasions spanning the continent of Asia during the 13th century may have been a primary vehicle for the dissemination of one of the world’s most deadly diseases: tuberculosis.

In this study, a team of scientists led by Dr. Igor Mokrousov from St. Petersburg’s Pasteur Institute demonstrated that the evolutionary history of the causative agent of tuberculosis (TB) has been shaped by human migration patterns.

The researchers examined the genetic signatures of over 300 strains of Mycobacterium tuberculosis, rod-shaped bacteria that, when airborne, infect the pulmonary systems of vulnerable individuals and give rise to clinical TB. The World Health Organization (WHO) estimates that TB kills 5,000 people worldwide every day, or approximately 2 million people each year. The pathogen is rapidly spreading and evolving multi-drug resistant strains in susceptible regions such as Africa. Interestingly, a strong gender bias in TB infection is reported globally each year; a 70% excess of male TB cases is typical.

"M. tuberculosis also has a remarkable ability to persist in the human host as a latent, asymptomatic form," explains Mokrousov. "This is probably what permitted M. tuberculosis to co-exist with humans during pre-industrialized times, when the primary mode of transmission was within families or households where there was significant physical contact." Today, approximately one-third of the world’s population are carriers of latent TB.

Mokrousov’s team hypothesized that, given the strong gender bias of TB infectivity and the likely family-based mode of TB transmission during pre-industrialized times, M. tuberculosis dissemination has reflected the unidirectional inheritance of the paternally transmitted human Y chromosome. To test this hypothesis, the authors compared the genetic profiles of a common form of M. tuberculosis, called the Beijing genotype, with known patterns of prehistoric and recent human migrations, as well as with global patterns of Y-chromosome variation. Strikingly, they observed that over the past 60,000-100,000 years, the dispersal and evolution of M. tuberculosis appears to have precisely ebbed and flowed according to human migration patterns.

The authors describe how the Beijing genotype of M. tuberculosis originated in a specific human population called the K-M9 in central Asia approximately 30,000-40,000 years ago following a second "out of Africa" migration event. The bacteria and its human host then disseminated northeast into Siberia between 20,000-30,000 years ago and throughout eastern Asia between 4,000-10,000 years ago. More recently, the Beijing genotype of M. tuberculosis was introduced into northern Eurasia, perhaps by Genghis Khan himself during the 1200’s, and into South Africa, possibly through sea trade contacts with Indonesia or China during the last 300 years.

"The population structure of M. tuberculosis appears to have been shaped by the demographic history of its human carrier," explains Mokrousov, "but this is the opposite of what William McNeill suggested in 1976 in his famous book Plagues and Peoples, where he so popularly described how the growth and spread of infectious diseases such as the Black Death have influenced human history."

Mokrousov feels that these observations have important implications for tracing the evolutionary history of microorganisms. "The timing of hallmark changes in bacterial genomes within the last 100,000 years may be inferred from comparison with relevant human migrations," he says.

Maria A. Smit | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>