Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies gene in mice that may control risk-taking behavior in humans

27.09.2005


One teenager likes to snowboard off a cliff. Another prefers to read a book and wouldn’t think of trading places. Why these differences exist is a mystery, but for the first time researchers have identified a possible genetic explanation behind risk-seeking behavior.



Scientists at Fred Hutchinson Cancer Research Center have found that a specific neurodevelopmental gene, called neuroD2, is related to the development of an almond-shaped area of the brain called the amygdala, the brain’s emotional seat. This gene also controls emotional-memory formation and development of the fear response, according to research led by James Olson, M.D., Ph.D., associate member of the Clinical Research Division at the Hutchinson Center.

The findings will be published in the early online edition of the Proceedings of the National Academy of Sciences the week of Sept. 26. Olson and colleagues studied mice with a single copy of the neuroD2 gene and found they had an impaired ability to form emotional memories and conditioned fear.


"Most of us are familiar with the fact that we can remember things better if those memories are formed at a time when there is a strong emotional impact – times when we are frightened, angry or falling in love," he said. "That’s called emotional-memory formation. The amygdala is the part of the brain that is responsible for formation of emotional memory."

In the brain’s early development, the neuroD2 gene encodes the neuroD2 protein to transform undifferentiated stem cell-like cells into neurons, or brain cells. Under the microscope, certain areas of the amygdala were absent in mice with no neuroD2 gene. In mice with just one copy of neuroD2, researchers also found fewer nerve cells in the amygdala.

Researchers conducted experiments on mice with a single copy of the neuroD2 gene to test the theory that only having one copy of the gene impacts emotional learning and the development of traits such as fear and aggression. Long-term behavioral studies of mice with no neuroD2 genes were not possible because these mice die within a few weeks of birth.

In one experiment, mice were exposed to an adverse stimulus coupled with a non-adverse stimulus, a tone followed by a mild foot shock. Normal mice crouch down and stop moving the next time they hear the tone, a physiologic response that indicates they expected a shock. The mice remembered the experience. However, those with a single copy of the neuroD2 gene did not respond to the tone like the normal mice did, researchers found. These mice did not freeze their movements as often in anticipation of the mild shock.

To assess the level of unconditioned fear in mice with a single copy of the neuroD2 gene, researchers put them into a situation that would elicit a fear response in normal mice. They used a maze elevated 40 centimeters above a tabletop where mice had the option to walk along narrow, unprotected walkways or arms with protective walls. Half of the time the neuroD2-deficient mice chose the unprotected arms, whereas the normal mice almost always chose the protected arms, Olson said.

"All of this matches very well with previous observations that the amygdala is responsible for fear, anxiety and aggression," said Olson. "Now we’re seeing that the neuroD2-deficient mice, when compared to normal littermates, show a profound difference in unconditioned anxiety levels as well as their ability to form emotional memories."

Olson noted that the dosage of neuroD2, one copy versus the normal two copies, was important for how much fear, anxiety and aggression the mice displayed.

"These findings are new to science," said Olson, who is also an associate professor in pediatrics at the University of Washington School of Medicine. "The contribution we have made is showing that neuroD2 is related to the development of the amygdala. This is the first time that a specific neurodevelopmental gene has been related to these emotional activities in the brain."

Further research is needed that one day could explain why some people react the way they do to fear, or why they take risks, Olson said. "The question is, are there differences in the neuroD2 gene-coding sequence or differences downstream of the neuroD2 pathway during brain development that could affect either psychiatric or emotional functions in humans? It’s a completely unexplored question; it is the immediate next question you would go to if you want to understand how this gene impacts human behavior."

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017 | Power and Electrical Engineering

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>