Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study points to molecular origin of neurodegenerative disorders, including Huntington’s disease

26.09.2005


New research from the University of North Carolina at Chapel Hill School of Medicine points to the possible molecular origin of at least nine human diseases of nervous system degeneration.



The findings are currently in PLoS Computational Biology, an open-access journal published by the Public Library of Science (PloS) in partnership with the International Society for Computational Biology.

These neurodegenerative diseases, including Huntington’s disease, share an abnormal deposit of proteins inside nerve cells. This deposition of protein results from a kind of genetic stutter within the cell’s nucleus asking for multiple copies of the amino acid glutamine, a building block of protein structure. These disorders are collectively known as polyglutamine diseases. Along with Huntington’s, these diseases include spinobulbar muscular atrophy; spinocerebellar ataxia types 1, 2, 3, 6, 7 and 17; and dentatorubral-pallidoluysian atrophy, or Haw River Syndrome.


Haw River Syndrome is a genetic brain disorder first identified in 1998 in five generations of a family having ancestors born in Haw River, N.C. The disorder begins in adolescence (between ages 15 and 30 years) and is characterized by progressive and widespread damage to brain function, leading to loss of coordination, seizures, paranoid delusions, dementia and death within 15 to 20 years.

Scientists are uncertain if protein deposition causes nerve cells to deteriorate and die. However, studies show that the greater the number of glutamine repeats in a protein above a certain threshold, the earlier the onset of disease and the more severe the symptoms. This result suggests that abnormally long glutamine tracts render their host protein toxic to nerve cells.

"Polyglutamine expansion greater than 35 to 40 repeats is definitely a key player in disease etiology and, perhaps, cell death," said Dr. Nikolay V. Dokholyan, assistant professor of biochemistry and biophysics at UNC.

In their new study, Dokholyan and UNC co-authors sought to determine why a correlation exists between polyglutamine expansion length and nerve cell death, or disease. They hypothesized that expansion of glutamines results in alternative structures forming within the protein that compete with its normal structure and function.

"As a result, the protein cannot function properly and, possibly, aggregates," Dokholyan said. In other words, an abnormally long sequence of glutamines might take on a shape that prevents the host protein from "folding" or coiling into its functional three-dimensional shape. All protein molecules are simple unbranched chains of amino acids; proper folding into an intricate shape enables these molecules to perform their biological function.

Researchers used computer simulations to mimic polyglutamine behavior. The UNC study showed that when the number of glutamine repeats exceeds a critical value, the glutamines tend to take on a specific shape in the protein called a beta helix. Moreover, the tendency to form a beta helix increases as glutamine tract length becomes longer.

"In our simulations, when the length is 25 glutamines, no beta helix forms. At 45, a large majority show beta helix formation," Dokholyan said. "And it appears that 37 glutamines marks a transition, as only a small number of beta helices are formed."

Dokholyan said one of his team’s goals is to find a way to inhibit the formation of protein aggregates.

"If we understand the mechanism and the structure, it may become possible to develop ways, including new small molecule drugs, that would interfere with the process of aggregation.

"Our philosophy in general has been that many diseases have underlying molecular etiology. And if something goes wrong at the organism level, it also goes wrong at the molecular level. We try to understand the dynamics and the change in structure that occurs in these molecules with the hope of uncovering their toxicity to the cell."

Co-authors with Dokholyan are graduate student Sagar D. Khare, postdoctoral researcher Dr. Feng Ding and Kenneth N. Gwanmesia, undergraduate student in physics and pre-engineering at Delaware State University.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>