Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleach Found to Neutralize Mold Allergens

26.09.2005


First-ever Human Studies Show Bleach Solution
Reduces Allergenic Properties of Mold

Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the September issue of The Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic individuals of mold spores treated with common household bleach.


"It has long been known that bleach can kill mold. However, dead mold may remain allergenic," said lead author John Martyny , Ph.D., associate professor of medicine at National Jewish. "We found that, under laboratory conditions, treating mold with bleach lowered allergic reactions to the mold in allergic patients."

The need for denaturing or neutralizing mold allergens is a critical step in mold treatment that has not been fully understood. Currently, most recommendations for mold remediation call for removal since dead mold retains its ability to trigger allergic reactions, according to Dr. Martyny.

The researchers grew the common fungus Aspergillus fumigatus on building materials for two weeks, and then sprayed some with a dilute household bleach solution (1:16 bleach to water), some with Tilex® Mold & Mildew Remover, a cleaning product containing both bleach and detergent, and others only with distilled water as a control. They then compared the viability and the allergenicity of the treated and untreated mold.

The researchers found that the use of the dilute bleach solution killed the A. fumigatus spores. When viewed using an electron microscope, the treated fungal spores appeared smaller, and lacked the surface structures present on healthy spores. In addition, surface allergens were no longer detected by ELISA antibody-binding assays, suggesting that the spores were no longer allergenic.

The National Jewish researchers then allergy-tested eight Aspergillus -allergic individuals with solutions from the bleach and Tilex®-treated building materials. Seven of the eight allergic individuals did not react to the bleach-treated building materials, and six did not react to the Tilex®-treated building materials. This evidence suggests that, under laboratory conditions, fungal-contaminated building materials treated with dilute bleach or Tilex® may have significantly reduced allergic health effects.

"This study was conducted under controlled laboratory conditions. In order to assure that the bleach solutions will function similarly under actual field conditions, additional experiments will need to be conducted," said Dr. Martyny. "We do believe, however, that there is good evidence that bleach does have the ability to significantly reduce the allergenic properties of common household mold under some conditions."

This study was partially funded by a grant from The Clorox Company.

National Jewish is the only medical and research center in the United Stated devoted entirely to respiratory, allergic, and immune-system diseases, including asthma, allergies, and chronic obstructive pulmonary disease. It is a non-profit, non-sectarian institution dedicated to enhancing prevention, treatment, and cures through research, and to developing and providing innovative clinical programs for patients regardless of age, religion, race, or ability to pay.

William Allstetter | EurekAlert!
Further information:
http://www.njc.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>