Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleach Found to Neutralize Mold Allergens

26.09.2005


First-ever Human Studies Show Bleach Solution
Reduces Allergenic Properties of Mold

Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the September issue of The Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic individuals of mold spores treated with common household bleach.


"It has long been known that bleach can kill mold. However, dead mold may remain allergenic," said lead author John Martyny , Ph.D., associate professor of medicine at National Jewish. "We found that, under laboratory conditions, treating mold with bleach lowered allergic reactions to the mold in allergic patients."

The need for denaturing or neutralizing mold allergens is a critical step in mold treatment that has not been fully understood. Currently, most recommendations for mold remediation call for removal since dead mold retains its ability to trigger allergic reactions, according to Dr. Martyny.

The researchers grew the common fungus Aspergillus fumigatus on building materials for two weeks, and then sprayed some with a dilute household bleach solution (1:16 bleach to water), some with Tilex® Mold & Mildew Remover, a cleaning product containing both bleach and detergent, and others only with distilled water as a control. They then compared the viability and the allergenicity of the treated and untreated mold.

The researchers found that the use of the dilute bleach solution killed the A. fumigatus spores. When viewed using an electron microscope, the treated fungal spores appeared smaller, and lacked the surface structures present on healthy spores. In addition, surface allergens were no longer detected by ELISA antibody-binding assays, suggesting that the spores were no longer allergenic.

The National Jewish researchers then allergy-tested eight Aspergillus -allergic individuals with solutions from the bleach and Tilex®-treated building materials. Seven of the eight allergic individuals did not react to the bleach-treated building materials, and six did not react to the Tilex®-treated building materials. This evidence suggests that, under laboratory conditions, fungal-contaminated building materials treated with dilute bleach or Tilex® may have significantly reduced allergic health effects.

"This study was conducted under controlled laboratory conditions. In order to assure that the bleach solutions will function similarly under actual field conditions, additional experiments will need to be conducted," said Dr. Martyny. "We do believe, however, that there is good evidence that bleach does have the ability to significantly reduce the allergenic properties of common household mold under some conditions."

This study was partially funded by a grant from The Clorox Company.

National Jewish is the only medical and research center in the United Stated devoted entirely to respiratory, allergic, and immune-system diseases, including asthma, allergies, and chronic obstructive pulmonary disease. It is a non-profit, non-sectarian institution dedicated to enhancing prevention, treatment, and cures through research, and to developing and providing innovative clinical programs for patients regardless of age, religion, race, or ability to pay.

William Allstetter | EurekAlert!
Further information:
http://www.njc.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>