Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants, not evil spirits, create devil’s gardens in the Amazon rainforest

22.09.2005


For the first time, scientists have identified an ant species that produces its own natural herbicide to poison unwanted plants.



Stanford University biologist Deborah M. Gordon and her co-workers describe the findings in the Sept. 22 issue of the journal Nature. The discovery was made during a four-year field study led by Stanford graduate student Megan E. Frederickson in the Amazon jungle of western Peru. The research focused on devil’s gardens, mysterious tracts of vegetation that randomly appear in the Amazonian rainforest.

"Devil’s gardens are large stands of trees in the Amazonian rainforest that consist almost entirely of a single species, Duroia hirsuta, and, according to local legend, are cultivated by an evil forest spirit," write Frederickson and her colleagues in Nature. "Here we show that the ant, Myrmelachista schumanni, which nests in D. hirsuta stems, creates devil’s gardens by poisoning all plants except its hosts with formic acid. By killing other plants, M. schumanni provides its colonies with abundant nest sites--a long-lasting benefit, as colonies can live for 800 years."


Devilish ants

Most tropical rainforests are densely populated with a remarkable diversity of trees, vines, shrubs and wildflowers. But devil’s gardens usually consist of a single plant, D. hirsuta, which happens to be the preferred habitat of the devil’s garden ant, M. schumanni.

In addition to the evil-spirit legend, two scientific proposals have been offered to explain why devil’s gardens occur. One hypothesis is that D. hirsuta trees release toxic secretions that kill competing plants--a process botanists call allelopathy. Others argue that devil’s garden ants are responsible for controlling vegetation, either by extensive pruning or poisoning. "The idea is that by killing other plants, the insects create a space for young D. hirsuta saplings to grow, thereby allowing the ant colony to expand as it occupies new nesting sites in the saplings," Frederickson explains.

To test this hypothesis, she and her colleagues conducted a series of experiments at the Madre Selva Biological Station in the Amazonian rainforest of Loreto, Peru. The research team located 10 devil’s gardens for the study, ranging in size from one to 328 D.hirsuta plants.

Two saplings of a common Amazonian tree called Cedrela odorata, or Spanish cedar, were planted inside each garden near the base of a D. hirsuta tree actively patrolled by worker ants. A sticky insect barrier was applied to one cedar sapling to exclude ants, while the other sapling was left untreated. The researchers planted two additional saplings--one treated, one untreated--about 150 feet outside of each garden but within the primary rainforest.

The results were immediate. Worker ants promptly attacked the untreated saplings, injecting a poison called formic acid into the leaves, which began to die within 24 hours. "Most of the leaves on these saplings were lost within five days, and the proportion lost was significantly higher than on ant-excluded saplings," the authors write. On the other hand, cedars treated with Tanglefoot fared well, whether inside or outside devil’s gardens.

"These results show that devil’s gardens are produced by M. schumanni workers rather than by D. hirsuta allelopathy," the authors conclude.

Domatia

To find out if worker ants only attack non-host plants, the scientists decided to mimic D. hirsuta’s hollow stems, called domatia, which are the ants’ primary nesting sites. Artificial domatia were constructed out of foil-wrapped test tubes partially filled with cotton. Two cedar saplings, with and without artificial tubes, were planted in devil’s gardens near two D. hirsuta saplings, one with and one without domatia. After 24 hours, there was significant leaf death on all of the cedar plants, but none on any D. hirsuta saplings. "We conclude that M. schumanni attacks only non-host plants, such as C. odorata, and that it does not rely on the presence of domatia to discriminate between its host and other plant species," the Stanford team notes.

Chemical analysis revealed that the only compound produced by the ants’ poison glands is formic acid, a toxin that is common in many ant species and, in fact, got its name from formica, which is Latin for ant. "Treatment of leaves with formic acid induced leaf necrosis on all the plants we tested," the authors write. "To our knowledge this is the first record of an ant using formic acid as a herbicide--although it is known to have bactericidal and fungicidal properties."

The ants employ a very effective system of lethal injection, notes Gordon, associate professor of biological sciences at Stanford. "The system harnesses two fundamental tools: formic acid, which many ant species use for other purposes, and the basic circulatory system of all vascular plants," she says.

A census of the rainforest from 2002 to 2004 revealed that devil’s gardens grew by 0.7 percent per year. "Using this growth rate, we estimate that the largest devil’s garden in our plot, with 351 plants, is 807 years old," the authors conclude. They estimate that a typical garden is tended by a single ant colony with as many as 3 million workers and 15,000 queens, adding that the presence of multiple queens "undoubtedly contributes to colony longevity."

Niche construction

"The cultivation of devil’s gardens by ants is an excellent example of niche construction," Frederickson says. "By killing plants of other species, the ant promotes the growth and establishment of D. hirsuta, thereby gaining more nest sites."

The plants also benefit by increasing their biomass and eliminating the competition, says co-author Michael J. Greene, a former Sanford postdoctoral fellow, now assistant professor of biology at the University of Colorado-Denver. "This work is a truly remarkable example of how effectively ants can manipulate their environment in order to promote their own survival," he adds.

A devil’s garden begins when a M. schumanni queen colonizes a single D. hirsuta tree, the authors write: "Over time, D. hirsuta saplings grow within the vegetation-free area created by the ants, and the ant colony expands to occupy them. The devilry of M. schumanni today provides homes for ants in the future."

Frederickson is conducting new field studies to determine which chemical cues the ants use to discriminate between host plants and other species. She also has begun searching for devil’s gardens in other parts of the western Amazon to see how widespread the herbicide phenomenon is. "Megan’s work reveals a system that is amazing because the ants exert so much control over their environment, creating single-species stands in one of the most diverse places on Earth," Gordon says.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu
http://www.projectamazonas.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>