Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings relate aspirin-induced ulcers, hearing loss

20.09.2005


Salicylate causes membranes to thin, soften, rupture more easily

It’s well known that high doses of aspirin can cause ulcers and temporary deafness, but the biochemical mechanism responsible for these phenomena has never been deciphered. New research from Rice University offers clues, showing for the first time how salicylate -- an active metabolite of aspirin -- weakens lipid membranes. Researchers believe these mechanical changes disrupt the lining of the stomach, which functions to protect underlying tissue from the acidic contents of the gut. By a similar mechanism, the changes may result in aspirin-related deafness by interfering with the proper function of prestin, a transmembrane protein that’s critical for mammalian hearing. The study appears in the September issue of Biophysical Journal.

"Our studies found that membranes exposed to physiological concentrations of salicylate were thinner, more permeable, easier to bend and more likely to rupture," said study co-author Robert Raphael, the T.N. Law Assistant Professor of Bioengineering.



All cells are surrounded by membranes, ultrathin barriers of fatty acids that are just a few nanometers thick. Membranes act like a skin, sealing off the inner machinery of the cell from the outside world. About 40 percent of human proteins are "transmembrane" proteins, molecules that stick through the membrane like a needle through a cloth.

First identified five years ago, prestin is a transmembrane protein found in the inner ear. A motor protein, prestin is thought to act like a piezocrystal, converting electrical signals into mechanical motion. In the outer hair cells of the cochlea, prestin acts as a molecular motor, causing the cells to move rhythmically and amplify the sounds we hear.

"If you change the mechanical properties of the membrane, you will likely affect the biophysical processes that take place there, including those that are mediated by membrane proteins like prestin," Raphael said.

Raphael’s findings also provide a mechanistic basis for the observations of Texas Medical Center researchers who have found that the debilitating and dangerous gastrointestinal side-effects of anti-inflammatory drugs like aspirin and ibuprofen are independent of biochemical signaling cascades mediated by cyclo-oxygenase (COX). Raphael’s research was co-sponored by the Texas Technology Development and Transfer Program and PLX Pharma, a Houston-based startup that began the final phase of clinical trials for its reformulated version of ibuprofen last December.

"Effectively, our results proved that salicylate can stabilize holes that spontaneously form in lipid membranes, thus increasing membrane permeability", Raphael said. "Our study highlights the pivotal role played by the mechanical properties of membranes in biological processes."

In their experiments, Raphael and graduate student Yong Zhou, the first author of the study, used a technique called micropipette aspiration. Working with needle-like glass capillary tubes, Zhou measured the mechanical properties of phospholipid membranes, which are very similar to those of live cells.

Raphael credited Zhou’s initiative in applying new technology to the problem.

"Yong was the driving force for introducing the new technique of dynamic tension spectroscopy into my laboratory," Raphael said. "This enabled us to really get insight into the subtle details associated with the mechanism by which salicyalte affects membrane stability."

Zhou was recently awarded a Student Research Fellowship award from the American Gastroenterological Association to conduct studies on another salicylate-like molecule.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>