Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers discover a molecular pathway that leads to recurrence of breast cancer

20.09.2005


Study may help find ways to prevent recurrence


The microscopic appearance of cells in recurrent tumors changes, transforming from a cuboidal, epithelial shape in primary tumors (left) to a spindle, fibroblastic shape in recurrent tumors (right). (Credit: Susan Moody, Denise Perez, and Lewis Chodosh, University of Pennsylvania School of Medicine and Cell Press)



Using a recently developed mouse model of breast cancer, a team from the University of Pennsylvania School of Medicine has shown that Snail, a molecule normally important in embryonic development, can promote breast cancer recurrence. They also found that high Snail expression predicts more rapid tumor recurrence in women who have been treated for breast cancer. These observations suggest that Snail may represent a target for cancer therapy.

Among women, breast cancer is the most common cancer worldwide and is the leading cause of cancer mortality. Of the more than 5 million women currently living with a diagnosis of breast cancer, recurrence represents the most common cause of death from this disease. Remarkably, recurrences can appear up to 20 years following surgery, although most occur within the first two years. "Up to 40 percent of women thought to be cancer free following surgery, radiation, and chemotherapy still have tumor cells in their bodies in a dormant state. As such, approaches to prevent cancer recurrence in these women would be broadly applicable," says senior author Lewis A. Chodosh, MD, PhD, Vice Chair of the Department of Cancer Biology and Director of Cancer Genetics at the Abramson Family Cancer Research Institute at Penn. The researchers published their findings in the September 2005 issue of Cancer Cell.


"To this point there are extraordinarily few targets that have been causally implicated in breast cancer recurrence. Consequently, there are few treatments available to offer women who are at risk for recurrence once they have received standard treatments," says Chodosh.

The Penn team of researchers induced breast cancer in the genetically engineered mice by giving doxycycline to turn on the oncogene HER-2/neu. This oncogene is commonly amplified in human breast cancers and is associated with aggressive disease and poor clinical outcome. The researchers then induced these tumors to regress by turning off the HER2/neu oncogene in fully formed tumors. This mimics important aspects of molecularly targeted therapies and leads to the dramatic regression of tumors to a clinically undetectable state. Nevertheless, residual tumor cells lie in a dormant state and later grow out after a month to a year in the mice.

Using microarrays, Chodosh’s team compared recurrent tumors with the original tumors from which they arose. They found that a variety of genes were turned on in recurrent tumors that were not on in the original tumors, including the transcriptional regulatory protein, Snail, which was induced ten-fold. The Penn team also identified changes in the microscopic appearance of the cells in recurrent tumors, which had transformed from a cuboidal, epithelial shape to a spindle, fibroblastic shape - a change associated with more aggressive tumors in humans.

Snail was first identified in fruit flies and later in mice based on its essential role in embryogenesis during a developmental transition in which normal cells undergo a similar change in shape. "Snail controls a complex set of cellular functions that cancer cells appropriate by turning on this master regulatory gene," explains Chodosh.

To prove a cause-and-effect, the researchers added Snail back to the original tumor cells in mice and showed that Snail increased the rate of recurrence.

But could Snail expression play a similar role in women with breast cancer? When the Penn team delved into public databases of breast cancer tissue data, separating cases into those with high levels of Snail and those with low levels of Snail, they found that women whose original breast cancers expressed high levels of Snail were twice as likely to experience a recurrence within five years following surgery compared to women whose cancers expressed low levels of Snail.

The magnitude of risk associated with high Snail expression is comparable to standard prognostic factors such as estrogen-receptor status, HER-2/Neu amplification, tumor size and grade, and lymph node status and - after correcting for the effects of these factors - Snail expression was shown to predict a woman’s risk of recurrence independent of these factors.

Currently, Chodosh and colleagues are exploring the precise molecular mechanism by which Snail triggers breast cancer recurrence, as well as ways of targeting Snail’s signaling pathways as a possible therapeutic approach to prevent recurrence.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>