Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study charts origins of fear

16.09.2005


A team of researchers led by the University of Toronto has charted how and where a painful event becomes permanently etched in the brain – a discovery that has implications for pain-related emotional disorders such as anxiety and post-traumatic stress.



U of T physiology professor Min Zhuo and his colleagues Professor Bong-Kiun Kaang of Seoul National University in South Korea, and Professor Bao-Ming Li of Fudan University in China have identified where emotional fear memory and pain begin by studying the biochemical processes in a different part of the brain. In a paper published in the Sept.15 issue of Neuron the researchers use mice to show how receptors activated in the pre-frontal cortex, the portion of the brain believed to be involved with higher intellectual functions, play a critical role in the development of fear. Previous research had pointed to activation in the hippocampus, an area buried in the forebrain that regulates emotion and memory, as the origin of fear memory.

"This is critical as it changes how and where scientists thought fear was developed," says Zhuo, the EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health. "By understanding the biomolecular mechanisms behind fear, we could potentially create therapeutic ways to ease emotional pain in people. Imagine reducing the ability of distressing events, such as amputations, to be permanently imprinted in the brain."


Zhuo says that fear memory does not occur immediately after a painful event; rather, it takes time for the memory to become part of our consciousness. The initial event activates NMDA receptors – molecules on cells that receive messages and then produce specific physiological effect in the cell – which are normally quiet but triggered when the brain receives a shock. Over time, the receptors leave their imprint on brain cells.

By delivering shocks to mice, the researchers activated the NMDA receptors and traced a subunit of the molecule – a protein called NR2B – long believed to be associated with fear memory in the hippocampus and the amygdala, an almond-shaped structure in front of the hippocampus. To further test the protein’s influence, researchers reduced the amount in mice and found they were less hesitant to avoid shocks. "We tested the animals using both spatial and auditory cues," Zhuo says. "In one experiment, the mice received small shocks when entering a chamber and they developed fear memory. In another experiment, we used sound tones to be associated with shocks. When NR2B was blocked, they no longer avoided the chamber or reacted to the tone."

Zhuo and his team then studied the mice’s brain slices and discovered traces of NR2B in the pre-frontal cortex, supporting their theory that fear memory develops in that region. "By identifying NR2B in the pre-frontal cortex of the brain, we propose that fear memory originates from a network of receptors, rather than one simple area," Zhuo says. "It is more complex than previously thought."

The next step, according to Zhuo, is to determine how NR2B directly affects memory formation and storage in the brain. "While we know it exists in the hippocampus, amygdala and the pre-frontal cortex, we don’t know exactly how it alters them," Zhuo says. "Once we understand the implications for each part, we will be able to reduce levels of NR2B accordingly and effectively reduce fear memory. In the future, perhaps people can take therapeutic measures before experiencing a particularly discomforting situation." The University of Toronto Innovations Foundation is currently working with Zhuo to push for the translation of this finding into treatments.

Karen Kelly | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>