Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study charts origins of fear


A team of researchers led by the University of Toronto has charted how and where a painful event becomes permanently etched in the brain – a discovery that has implications for pain-related emotional disorders such as anxiety and post-traumatic stress.

U of T physiology professor Min Zhuo and his colleagues Professor Bong-Kiun Kaang of Seoul National University in South Korea, and Professor Bao-Ming Li of Fudan University in China have identified where emotional fear memory and pain begin by studying the biochemical processes in a different part of the brain. In a paper published in the Sept.15 issue of Neuron the researchers use mice to show how receptors activated in the pre-frontal cortex, the portion of the brain believed to be involved with higher intellectual functions, play a critical role in the development of fear. Previous research had pointed to activation in the hippocampus, an area buried in the forebrain that regulates emotion and memory, as the origin of fear memory.

"This is critical as it changes how and where scientists thought fear was developed," says Zhuo, the EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health. "By understanding the biomolecular mechanisms behind fear, we could potentially create therapeutic ways to ease emotional pain in people. Imagine reducing the ability of distressing events, such as amputations, to be permanently imprinted in the brain."

Zhuo says that fear memory does not occur immediately after a painful event; rather, it takes time for the memory to become part of our consciousness. The initial event activates NMDA receptors – molecules on cells that receive messages and then produce specific physiological effect in the cell – which are normally quiet but triggered when the brain receives a shock. Over time, the receptors leave their imprint on brain cells.

By delivering shocks to mice, the researchers activated the NMDA receptors and traced a subunit of the molecule – a protein called NR2B – long believed to be associated with fear memory in the hippocampus and the amygdala, an almond-shaped structure in front of the hippocampus. To further test the protein’s influence, researchers reduced the amount in mice and found they were less hesitant to avoid shocks. "We tested the animals using both spatial and auditory cues," Zhuo says. "In one experiment, the mice received small shocks when entering a chamber and they developed fear memory. In another experiment, we used sound tones to be associated with shocks. When NR2B was blocked, they no longer avoided the chamber or reacted to the tone."

Zhuo and his team then studied the mice’s brain slices and discovered traces of NR2B in the pre-frontal cortex, supporting their theory that fear memory develops in that region. "By identifying NR2B in the pre-frontal cortex of the brain, we propose that fear memory originates from a network of receptors, rather than one simple area," Zhuo says. "It is more complex than previously thought."

The next step, according to Zhuo, is to determine how NR2B directly affects memory formation and storage in the brain. "While we know it exists in the hippocampus, amygdala and the pre-frontal cortex, we don’t know exactly how it alters them," Zhuo says. "Once we understand the implications for each part, we will be able to reduce levels of NR2B accordingly and effectively reduce fear memory. In the future, perhaps people can take therapeutic measures before experiencing a particularly discomforting situation." The University of Toronto Innovations Foundation is currently working with Zhuo to push for the translation of this finding into treatments.

Karen Kelly | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>