Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study charts origins of fear

16.09.2005


A team of researchers led by the University of Toronto has charted how and where a painful event becomes permanently etched in the brain – a discovery that has implications for pain-related emotional disorders such as anxiety and post-traumatic stress.



U of T physiology professor Min Zhuo and his colleagues Professor Bong-Kiun Kaang of Seoul National University in South Korea, and Professor Bao-Ming Li of Fudan University in China have identified where emotional fear memory and pain begin by studying the biochemical processes in a different part of the brain. In a paper published in the Sept.15 issue of Neuron the researchers use mice to show how receptors activated in the pre-frontal cortex, the portion of the brain believed to be involved with higher intellectual functions, play a critical role in the development of fear. Previous research had pointed to activation in the hippocampus, an area buried in the forebrain that regulates emotion and memory, as the origin of fear memory.

"This is critical as it changes how and where scientists thought fear was developed," says Zhuo, the EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health. "By understanding the biomolecular mechanisms behind fear, we could potentially create therapeutic ways to ease emotional pain in people. Imagine reducing the ability of distressing events, such as amputations, to be permanently imprinted in the brain."


Zhuo says that fear memory does not occur immediately after a painful event; rather, it takes time for the memory to become part of our consciousness. The initial event activates NMDA receptors – molecules on cells that receive messages and then produce specific physiological effect in the cell – which are normally quiet but triggered when the brain receives a shock. Over time, the receptors leave their imprint on brain cells.

By delivering shocks to mice, the researchers activated the NMDA receptors and traced a subunit of the molecule – a protein called NR2B – long believed to be associated with fear memory in the hippocampus and the amygdala, an almond-shaped structure in front of the hippocampus. To further test the protein’s influence, researchers reduced the amount in mice and found they were less hesitant to avoid shocks. "We tested the animals using both spatial and auditory cues," Zhuo says. "In one experiment, the mice received small shocks when entering a chamber and they developed fear memory. In another experiment, we used sound tones to be associated with shocks. When NR2B was blocked, they no longer avoided the chamber or reacted to the tone."

Zhuo and his team then studied the mice’s brain slices and discovered traces of NR2B in the pre-frontal cortex, supporting their theory that fear memory develops in that region. "By identifying NR2B in the pre-frontal cortex of the brain, we propose that fear memory originates from a network of receptors, rather than one simple area," Zhuo says. "It is more complex than previously thought."

The next step, according to Zhuo, is to determine how NR2B directly affects memory formation and storage in the brain. "While we know it exists in the hippocampus, amygdala and the pre-frontal cortex, we don’t know exactly how it alters them," Zhuo says. "Once we understand the implications for each part, we will be able to reduce levels of NR2B accordingly and effectively reduce fear memory. In the future, perhaps people can take therapeutic measures before experiencing a particularly discomforting situation." The University of Toronto Innovations Foundation is currently working with Zhuo to push for the translation of this finding into treatments.

Karen Kelly | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>