Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Link Suggested Between Regions on Two Chromosomes and Bipolar Disorder


An international team of 53 researchers has offered the most convincing evidence so far linking bipolar disorder, also known as manic depression, to two chromosomal regions in the human genome. The finding gives scientists refined targets for further gene studies.

"Even though bipolar disorder affects millions of people around the world-sometimes throughout their lifetimes-what we understand to be biologically relevant at the genetic level is not terribly characterized," said Matthew McQueen, lead author and postdoctoral fellow in the Department of Epidemiology at the Harvard School of Public Health (HSPH). "This research can help focus the field to identify viable candidate genes."

The study will appear in the October issue of the American Journal of Human Genetics and is available now in the journal’s electronic edition online at

More than two million American adults have bipolar disorder, according to the National Institute of Mental Health. Patients typically experience dramatic mood swings from episodes of euphoria and high energy to feelings of intense sadness, fatigue, and even suicide. Psychiatrists have identified two primary forms of the illness: bipolar I disorder, which is the classic form of recurring mania and depression, and bipolar II disorder, which has less severe episodes of mania. Treatment often includes medication.

The exact cause of the illness remains unknown, but scientists suspect the involvement of several genes, coupled with environmental influences. A number of individual studies have suggested genomic regions linked to bipolar disorder, but their results have been inconsistent and difficult to replicate, leaving the field "standing at a crossroads, wondering in which direction to go next," said McQueen.

To establish more definitive research, McQueen and his colleagues did something unusual. They secured and then combined original genome scan data from 11 independent linkage studies, instead of relying on the more common approach of using summary data from such studies.

"The use of original data made a significant difference in our ability to control for variation in several factors among the different data sets and to make the overall analysis much more consistent and powerful," said Nan Laird, HSPH Professor of Biostatistics and senior author on the paper.

The resulting analysis involved 1,067 families and 5,179 individuals from North America, Italy, Germany, Portugal, the UK, Ireland, and Israel, who had provided blood samples and family medical histories. The research team combined the data into a single genome scan and found strong genetic signals on chromosomes 6 and 8. The team now hopes to narrow the search to find associations between specific genes and the mental illness.

The analysis was funded through the Study of Genetic Determinants of Bipolar Disorder Project at the National Institute of Mental Health. Other researchers on the analysis team represented Massachusetts General Hospital, The Broad Institute, and the University of Pittsburgh.

For further information contact:
Christina Roache
Office of Communications
Harvard School of Public Health
677 Huntington Ave.,
Boston, MA 02115

Tel# 617.432.6052

Christina Roache | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>