Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link Suggested Between Regions on Two Chromosomes and Bipolar Disorder

16.09.2005


An international team of 53 researchers has offered the most convincing evidence so far linking bipolar disorder, also known as manic depression, to two chromosomal regions in the human genome. The finding gives scientists refined targets for further gene studies.

"Even though bipolar disorder affects millions of people around the world-sometimes throughout their lifetimes-what we understand to be biologically relevant at the genetic level is not terribly characterized," said Matthew McQueen, lead author and postdoctoral fellow in the Department of Epidemiology at the Harvard School of Public Health (HSPH). "This research can help focus the field to identify viable candidate genes."

The study will appear in the October issue of the American Journal of Human Genetics and is available now in the journal’s electronic edition online at http://www.journals.uchicago.edu/AJHG/journal/contents/v77n4.html.



More than two million American adults have bipolar disorder, according to the National Institute of Mental Health. Patients typically experience dramatic mood swings from episodes of euphoria and high energy to feelings of intense sadness, fatigue, and even suicide. Psychiatrists have identified two primary forms of the illness: bipolar I disorder, which is the classic form of recurring mania and depression, and bipolar II disorder, which has less severe episodes of mania. Treatment often includes medication.

The exact cause of the illness remains unknown, but scientists suspect the involvement of several genes, coupled with environmental influences. A number of individual studies have suggested genomic regions linked to bipolar disorder, but their results have been inconsistent and difficult to replicate, leaving the field "standing at a crossroads, wondering in which direction to go next," said McQueen.

To establish more definitive research, McQueen and his colleagues did something unusual. They secured and then combined original genome scan data from 11 independent linkage studies, instead of relying on the more common approach of using summary data from such studies.

"The use of original data made a significant difference in our ability to control for variation in several factors among the different data sets and to make the overall analysis much more consistent and powerful," said Nan Laird, HSPH Professor of Biostatistics and senior author on the paper.

The resulting analysis involved 1,067 families and 5,179 individuals from North America, Italy, Germany, Portugal, the UK, Ireland, and Israel, who had provided blood samples and family medical histories. The research team combined the data into a single genome scan and found strong genetic signals on chromosomes 6 and 8. The team now hopes to narrow the search to find associations between specific genes and the mental illness.

The analysis was funded through the Study of Genetic Determinants of Bipolar Disorder Project at the National Institute of Mental Health. Other researchers on the analysis team represented Massachusetts General Hospital, The Broad Institute, and the University of Pittsburgh.

For further information contact:
Christina Roache
Office of Communications
Harvard School of Public Health
677 Huntington Ave.,
Boston, MA 02115

Tel# 617.432.6052
croache@hsph.harvard.edu

Christina Roache | EurekAlert!
Further information:
http://www.hsph.harvard.edu
http://www.journals.uchicago.edu/AJHG/journal/contents/v77n4.html

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>