Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link Suggested Between Regions on Two Chromosomes and Bipolar Disorder

16.09.2005


An international team of 53 researchers has offered the most convincing evidence so far linking bipolar disorder, also known as manic depression, to two chromosomal regions in the human genome. The finding gives scientists refined targets for further gene studies.

"Even though bipolar disorder affects millions of people around the world-sometimes throughout their lifetimes-what we understand to be biologically relevant at the genetic level is not terribly characterized," said Matthew McQueen, lead author and postdoctoral fellow in the Department of Epidemiology at the Harvard School of Public Health (HSPH). "This research can help focus the field to identify viable candidate genes."

The study will appear in the October issue of the American Journal of Human Genetics and is available now in the journal’s electronic edition online at http://www.journals.uchicago.edu/AJHG/journal/contents/v77n4.html.



More than two million American adults have bipolar disorder, according to the National Institute of Mental Health. Patients typically experience dramatic mood swings from episodes of euphoria and high energy to feelings of intense sadness, fatigue, and even suicide. Psychiatrists have identified two primary forms of the illness: bipolar I disorder, which is the classic form of recurring mania and depression, and bipolar II disorder, which has less severe episodes of mania. Treatment often includes medication.

The exact cause of the illness remains unknown, but scientists suspect the involvement of several genes, coupled with environmental influences. A number of individual studies have suggested genomic regions linked to bipolar disorder, but their results have been inconsistent and difficult to replicate, leaving the field "standing at a crossroads, wondering in which direction to go next," said McQueen.

To establish more definitive research, McQueen and his colleagues did something unusual. They secured and then combined original genome scan data from 11 independent linkage studies, instead of relying on the more common approach of using summary data from such studies.

"The use of original data made a significant difference in our ability to control for variation in several factors among the different data sets and to make the overall analysis much more consistent and powerful," said Nan Laird, HSPH Professor of Biostatistics and senior author on the paper.

The resulting analysis involved 1,067 families and 5,179 individuals from North America, Italy, Germany, Portugal, the UK, Ireland, and Israel, who had provided blood samples and family medical histories. The research team combined the data into a single genome scan and found strong genetic signals on chromosomes 6 and 8. The team now hopes to narrow the search to find associations between specific genes and the mental illness.

The analysis was funded through the Study of Genetic Determinants of Bipolar Disorder Project at the National Institute of Mental Health. Other researchers on the analysis team represented Massachusetts General Hospital, The Broad Institute, and the University of Pittsburgh.

For further information contact:
Christina Roache
Office of Communications
Harvard School of Public Health
677 Huntington Ave.,
Boston, MA 02115

Tel# 617.432.6052
croache@hsph.harvard.edu

Christina Roache | EurekAlert!
Further information:
http://www.hsph.harvard.edu
http://www.journals.uchicago.edu/AJHG/journal/contents/v77n4.html

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>