Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation rate in a gene on the X chromosome holds promise for testing cancer risk

15.09.2005


A new study to detect an elevated rate of mutations in a gene on the X chromosome holds promise for developing a test that could identify individuals at risk for developing cancer. In the study, led by David J. Araten, M.D., Assistant Professor in the Department of Hematology at NYU School of Medicine, the rate of mutations in the gene, called PIG-A, was significantly higher in individuals born with defects in the cellular machinery to repair DNA compared to people without these genetic conditions.



The study is published in the September 15 issue of Cancer Research, a journal of the American Association for Cancer Research.

"The mutation rate is widely believed to be a critical factor in the development of cancer, but it has been extremely difficult to study in human cells," says Dr. Araten. "The ultimate goal of our project is to develop a test for the mutation rate. If successful, we may be able identify individuals at high risk for cancer and find ways to decrease their risk."


In the new study, supported by a grant from the Doris Duke Charitable Foundation, Dr. Araten found that the chance of a mutation in the PIG-A gene each time a cell divides ranges from about 1 in 3 million to about 1 in 300,000 in cells from individuals without a genetic predisposition to cancer.

Among some people with Fanconi anemia and ataxia telangiectasia, conditions involving defects in DNA repair, which predisposes them to cancer, the probability of mutations was close to 1 in 100,000 to 1 in 20,000 per cell division, according to the study.

In order to find the mutations in the PIG-A gene, Dr. Araten took advantage of some unique properties of this gene that can be exploited with an instrument called a flow cytometer, which rapidly sifts through millions of cells to identify the rare mutants. This tool uses a laser to light up antibodies attached to surface proteins on cells; PIG-A mutants lack some of these proteins and do not fluoresce.

In human cells there are two functional copies for most genes and therefore two mutations would be required to identify a rare mutant. Because each mutation is so rare, two mutations would be unlikely to occur in the same cell in a screening test, making detection nearly impossible. However, the PIG-A gene is on the X-chromosome, which is present in only one copy in male cells and there is only one functional copy in female cells. Therefore, cells with only a single mutation in PIG-A can be identified.

"The higher the mutation rate, the more quickly cells will acquire the mutations that cause cancer," says Dr. Araten. "With a test for the mutation rate, we may be able to enroll patients at high risk in screening programs to identify cancers at an early, curable stage. We may also be able to develop medications that decrease the mutation rate."

Pamela McDonnell | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>