Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify two key genes linked to aggressive breast cancers

15.09.2005


Drugs already in development to target the genetic pathway

In a new study, scientists at The Hospital for Sick Children and Princess Margaret Hospital have shown that two genes called Notch1 and Jagged1 are linked to more aggressive breast cancers and that patients are less likely to survive the disease when these two genes are highly expressed.

The study is published in the September 15th issue of the journal Cancer Research, a publication of the American Association for Cancer Research.



"These two genes are likely markers indicating a patient’s probable prognosis," says the study’s principal investigator Dr. Sean Egan, senior scientist at The Hospital for Sick Children and associate professor of molecular and medical genetics at the University of Toronto. "Now we can develop a way of screening for these markers, which may help physicians determine how best to treat patients."

Notch1 and Jagged1 are players in the Notch signalling pathway, which is normally involved in cell communication, division, differentiation, survival, and self-renewal. The scientists’ work suggests that the Notch pathway may be overactive in some aggressive breast cancers.

"We’re excited by this discovery because there are drugs already in development that interfere with the Notch pathway," says the study’s lead author Dr. Michael Reedijk, surgical oncologist in the breast cancer program at Princess Margaret Hospital and assistant professor of surgery at the University of Toronto. "We’re benefiting from 10 years of research that’s been done on generating drugs to treat Alzheimer’s disease. These drugs inhibit an enzyme called gamma secretase, which is likely responsible for the build up of amyloid plaques in the brains of patients with Alzheimer’s disease. As Notch signalling also depends on gamma secretase, these drugs may be useful in treating Notch-dependant cancers."

The scientists examined tumour samples from 184 breast cancer patients with different prognoses and compared the gene expressions with each patient’s outcome. Patients with high levels of Jagged1 had a five-year survival rate of 42% and an average survival of 50 months, compared to patients with low levels of Jagged1 who had a five-year survival rate of 65% and an average survival of 83 months.

Patients with high levels of Notch1 had a five-year survival rate of 49% and an average survival of 53 months, whereas patients with low levels of Notch1 had a five-year survival rate of 64% and an average survival of 91 months.

Patients with combined high levels of Jagged1 and Notch1 had a significantly reduced five-year survival rate of 34% and an average survival of 43 months.

Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer death. The Canadian Cancer Society estimates that 21,600 women will be diagnosed with breast cancer and 5,300 will die of the disease in 2005. One in nine women will develop breast cancer during her lifetime, and one in 27 women will die from breast cancer.

Jennifer Kohm | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>