Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify two key genes linked to aggressive breast cancers

15.09.2005


Drugs already in development to target the genetic pathway

In a new study, scientists at The Hospital for Sick Children and Princess Margaret Hospital have shown that two genes called Notch1 and Jagged1 are linked to more aggressive breast cancers and that patients are less likely to survive the disease when these two genes are highly expressed.

The study is published in the September 15th issue of the journal Cancer Research, a publication of the American Association for Cancer Research.



"These two genes are likely markers indicating a patient’s probable prognosis," says the study’s principal investigator Dr. Sean Egan, senior scientist at The Hospital for Sick Children and associate professor of molecular and medical genetics at the University of Toronto. "Now we can develop a way of screening for these markers, which may help physicians determine how best to treat patients."

Notch1 and Jagged1 are players in the Notch signalling pathway, which is normally involved in cell communication, division, differentiation, survival, and self-renewal. The scientists’ work suggests that the Notch pathway may be overactive in some aggressive breast cancers.

"We’re excited by this discovery because there are drugs already in development that interfere with the Notch pathway," says the study’s lead author Dr. Michael Reedijk, surgical oncologist in the breast cancer program at Princess Margaret Hospital and assistant professor of surgery at the University of Toronto. "We’re benefiting from 10 years of research that’s been done on generating drugs to treat Alzheimer’s disease. These drugs inhibit an enzyme called gamma secretase, which is likely responsible for the build up of amyloid plaques in the brains of patients with Alzheimer’s disease. As Notch signalling also depends on gamma secretase, these drugs may be useful in treating Notch-dependant cancers."

The scientists examined tumour samples from 184 breast cancer patients with different prognoses and compared the gene expressions with each patient’s outcome. Patients with high levels of Jagged1 had a five-year survival rate of 42% and an average survival of 50 months, compared to patients with low levels of Jagged1 who had a five-year survival rate of 65% and an average survival of 83 months.

Patients with high levels of Notch1 had a five-year survival rate of 49% and an average survival of 53 months, whereas patients with low levels of Notch1 had a five-year survival rate of 64% and an average survival of 91 months.

Patients with combined high levels of Jagged1 and Notch1 had a significantly reduced five-year survival rate of 34% and an average survival of 43 months.

Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer death. The Canadian Cancer Society estimates that 21,600 women will be diagnosed with breast cancer and 5,300 will die of the disease in 2005. One in nine women will develop breast cancer during her lifetime, and one in 27 women will die from breast cancer.

Jennifer Kohm | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>