Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Abused children stay highly attuned to anger

15.09.2005


Even the subtlest hints of anger or hostility in their environment sets physically abused children on prolonged ’alert’, even if a conflict has nothing to do with them.



The tendency to stay attentive of nearby discord is probably a natural form of self-preservation in children who routinely face aggression. But it may also explain why abused children are often so distracted at school, write researchers from the University of Wisconsin-Madison, in the journal Child Development (September 14, 2005).

Led by Seth Pollak, a professor of psychology, psychiatry and pediatrics, the UW-Madison team tracked biological markers in 11 abused four and five-year olds who play a computer game in one room when suddenly a clearly audible, heated argument erupts between students next door.


Unbeknownst to the children, the "argument"- over an incomplete homework assignment - was actually a scripted dialogue performed by two actors.

Both abused and non-abused children initially displayed signs of emotional arousal-such as sweaty palms and decelerated heart rates--in reaction to the angry voices in the next room. Heart rates often decelerate prior to a "fight or flight" response, says Pollak, who is also a researcher at the UW-Madison Waisman Center for Human Development.

But though heart rates of non-abused subjects soon rose back to normal levels, heart rates in the abused group remained low-the abused children could not completely break their attention away from the next-door argument, even when it ended peacefully.

"What’s really interesting about this experiment is that the abused children were taking their attention resources and redeploying them into something that had nothing to do with the children at all," says Pollak. "That provides an important clue about why these children are having interpersonal problems."

The UW-Madison work builds on past experiments in which Pollak has aimed to understand the developmental mechanisms that may lead abuse victims to adopt unhealthy behaviors later in life, such as aggression, social anxiety and addictions. "Several psychologists had put forward some very sophisticated theories about the outcomes of child abuse but no one had offered any brain-based cognitive models to explain why those outcomes occur," Pollak says.

Consequently, in 1999, Pollak showed that electrical brain activity spikes dramatically when abused children view digital images of angry faces. That result was not too surprising, he says. "Obviously, abused children’s brains are doing exactly what they should be doing - they are learning to cope with their situation."

The latest work explores whether abused children react similarly to anger in real life situations, or in this case, experimental simulations of the real world. Pollak says the next step will be to discern exactly which neural systems and brain regions are most affected after physical abuse. "Knowing this specificity could help us figure out ways to eventually intervene in tailored ways."

Seth Pollak | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>