Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of faulty fingerprints debunks forensic science ’zero error’ claim

14.09.2005


Set of known errors is merely tip of the iceberg, UCI researcher says



While forensic scientists have long claimed fingerprint evidence is infallible, the widely publicized error that landed an innocent American behind bars as a suspect in the Madrid train bombing alerted the nation to the potential flaws in the system. Now, UC Irvine criminologist Simon Cole has shown that not only do errors occur, but as many as a thousand incorrect fingerprint “matches” could be made each year in the U.S. This is in spite of safeguards intended to prevent errors.

Cole’s study is the first to analyze all publicly known mistaken fingerprint matches. In analyzing these cases of faulty matches dating from 1920, Cole suggests that the 22 exposed incidents, including eight since 1999, are merely the tip of the iceberg. Despite the publicly acknowledged cases of error, fingerprint examiners have long held that fingerprint identification is “infallible,” and testified in court that their error rate for matching fingerprints is zero.


“Rather than blindly insisting there is zero error in fingerprint matching, we should acknowledge the obvious, study the errors openly and find constructive ways to prevent faulty evidence from being used to convict innocent people,” said Cole, an assistant professor of criminology, law and society.

The study appears in the current issue of the Journal of Criminal Law & Criminology.

Cole’s data set represents a small portion of actual fingerprint errors because it includes only those publicly exposed cases of mistaken matches. The majority of the cases discussed in this study were discovered only through extremely fortuitous circumstances, such as a post-conviction DNA test, the intervention of foreign police and even a deadly lab accident that led to the re-evaluation of evidence.

One highly publicized example is that of Brandon Mayfield, the Portland lawyer who was arrested and held for two weeks as a suspect in the Madrid train bombings in 2004. FBI investigators matched prints at the scene to Mayfield, and an independent examiner verified the match. But Spanish National Police examiners insisted the prints did not match Mayfield and eventually identified another man who matched the prints. The FBI acknowledged the error and Mayfield was released.

Wrongful convictions on the basis of faulty evidence are supposed to be prevented by four safeguards: having print identifications “verified” by additional examiners; ensuring the examiners are competent; requiring a high number of matching points in the ridges before declaring the print a match; and having independent experts examine the prints on behalf of the defendant. However, each of these safeguards failed in cases Cole studied. In fact, in four of the cases, independent experts verified the faulty matches.

Despite print examiners’ zero-mistake claim, Cole points out that proficiency tests conducted since 1983 show an aggregate error rate of 0.8 percent. Though that may seem small, when multiplied by the large number of cases U.S. crime laboratories processed in 2002, it suggests there could be as many as 1,900 mistaken fingerprint matches made that year alone.

“While we don’t know how many fingerprint errors are caught in the lab and then swept under the rug – or, worse, how many have still not been caught and may have resulted in a wrongful conviction – we clearly need a full evaluation of the errors,” Cole said. “The argument that fingerprints are infallible evidence is simply unacceptable.”

About the University of California, Irvine: Celebrating 40 years of innovation, the University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Christine Byrd | EurekAlert!
Further information:
http://www.today.uci.edu
http://www.uci.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>