Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system has evolved to prevent autoimmune disease

13.09.2005


Study suggests chronic infections may create autoimmune response



New research finds the human immune system has foregone evolutionary changes that would allow it to produce better antibodies in less time because the improved antibodies would be far more likely to attack the body’s own tissues. The Rice University study finds the immune system has evolved a near-perfect balance for producing antibodies that are both effective against pathogens and unlikely to cause autoimmune disease.

The findings will be published in the journal Physical Review Letters. They are based on a new model of the immune system that is the first to simulate the hierarchical nature of the body’s immune response. The model predicts that chronic infections may lead to autoimmune diseases, a scenario that has been proposed as a cause of some rheumatic diseases like arthritis.


"There are as many as a 100 million unique antibodies circulating through our bodies at any given time, but just three or four of these might be effective against any particular disease," said Michael Deem, the John W. Cox Professor in Biochemical and Genetic Engineering and professor of physics and astronomy. "When we get sick, the immune system identifies the particular antibodies that are effective, as it rapidly creates and mass produces mutant white blood cells called B cells that make only these antibodies."

Deem said prior research has identified a number of alternate strategies the immune system could use to reduce the time needed to create an effective B cell. In addition, these methods also could produce antibodies that are more apt to bind with disease cells. The upshot would be an immune system that responds faster and more effectively against disease.

"This should help us get well faster, so the question becomes, ’Why didn’t we evolve that kind of adaptive response?’" Deem said.

Deem’s analysis falls within a branch of physics called statistical mechanics, which uses a system’s physical behavior at the molecular or atomic scale to build up a picture of the behavior at a larger level. In this case, Deem and postdoctoral researchers Jun Sun and David J. Earl studied the physical properties of fragments of DNA to determine the origins, behavior, and generation of antibodies.

Generating antibodies is one of the primary functions of the immune system. Antibodies are protein molecules that are made by B cells. Each antibody has a chemical signature that allows it to bind only with a particular sequence of amino acids.

"In our study, we first sought to understand the evolutionary rules that govern the way the immune system responds to an infection," Deem said. "With that framework in place, we identified a biologically-plausible strategy that would allow the immune system to react more quickly and with more effective antibodies. Our analysis revealed that such a system would be about 1,000 times more likely to produce antibodies that attack healthy tissues."

Antibodies that bind with something other than the antigen they evolved to attack are called cross-reactive, and some researchers believe cross-reactivity causes some autoimmune diseases.

For example, some scientists have found a correlation between chronic infection and an increased probability of autoimmune disease, but the strength and significance of the correlation is controversial. Rice’s model suggests that a correlation does exist, but that the length of the infection prior to onset of autoimmune disease is highly variable.

"People have been looking for a clear, significant correlation in time, but a long distribution of onset times would lead to weaker statistical correlations, particularly in those cases where the infection persisted the longest," said Deem. "Searching for this distribution in health and medical statistics could shed light on this immunological puzzle and settle the scientific controversy."

The Rice analysis finds the human immune system evolved to minimize the risk of cross-reactivity. For example, each cell in our bodies contains about 100,000 proteins with an average of 500 amino acids apiece. Consequently, there are about one trillion potential docking sites, or epitopes, where antibodies could mistakenly attach themselves to proteins in a healthy cell. The mutation response method employed by our adaptive immune system seems keyed to this number, producing antibodies that are statistically likely to mistakenly bond with healthy proteins slightly less than one in a trillion times, meaning that on average, they recognize only invading pathogens.

The research was funded by the NIH/National Institute of Allergy and Infectious Disease.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>