Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system has evolved to prevent autoimmune disease

13.09.2005


Study suggests chronic infections may create autoimmune response



New research finds the human immune system has foregone evolutionary changes that would allow it to produce better antibodies in less time because the improved antibodies would be far more likely to attack the body’s own tissues. The Rice University study finds the immune system has evolved a near-perfect balance for producing antibodies that are both effective against pathogens and unlikely to cause autoimmune disease.

The findings will be published in the journal Physical Review Letters. They are based on a new model of the immune system that is the first to simulate the hierarchical nature of the body’s immune response. The model predicts that chronic infections may lead to autoimmune diseases, a scenario that has been proposed as a cause of some rheumatic diseases like arthritis.


"There are as many as a 100 million unique antibodies circulating through our bodies at any given time, but just three or four of these might be effective against any particular disease," said Michael Deem, the John W. Cox Professor in Biochemical and Genetic Engineering and professor of physics and astronomy. "When we get sick, the immune system identifies the particular antibodies that are effective, as it rapidly creates and mass produces mutant white blood cells called B cells that make only these antibodies."

Deem said prior research has identified a number of alternate strategies the immune system could use to reduce the time needed to create an effective B cell. In addition, these methods also could produce antibodies that are more apt to bind with disease cells. The upshot would be an immune system that responds faster and more effectively against disease.

"This should help us get well faster, so the question becomes, ’Why didn’t we evolve that kind of adaptive response?’" Deem said.

Deem’s analysis falls within a branch of physics called statistical mechanics, which uses a system’s physical behavior at the molecular or atomic scale to build up a picture of the behavior at a larger level. In this case, Deem and postdoctoral researchers Jun Sun and David J. Earl studied the physical properties of fragments of DNA to determine the origins, behavior, and generation of antibodies.

Generating antibodies is one of the primary functions of the immune system. Antibodies are protein molecules that are made by B cells. Each antibody has a chemical signature that allows it to bind only with a particular sequence of amino acids.

"In our study, we first sought to understand the evolutionary rules that govern the way the immune system responds to an infection," Deem said. "With that framework in place, we identified a biologically-plausible strategy that would allow the immune system to react more quickly and with more effective antibodies. Our analysis revealed that such a system would be about 1,000 times more likely to produce antibodies that attack healthy tissues."

Antibodies that bind with something other than the antigen they evolved to attack are called cross-reactive, and some researchers believe cross-reactivity causes some autoimmune diseases.

For example, some scientists have found a correlation between chronic infection and an increased probability of autoimmune disease, but the strength and significance of the correlation is controversial. Rice’s model suggests that a correlation does exist, but that the length of the infection prior to onset of autoimmune disease is highly variable.

"People have been looking for a clear, significant correlation in time, but a long distribution of onset times would lead to weaker statistical correlations, particularly in those cases where the infection persisted the longest," said Deem. "Searching for this distribution in health and medical statistics could shed light on this immunological puzzle and settle the scientific controversy."

The Rice analysis finds the human immune system evolved to minimize the risk of cross-reactivity. For example, each cell in our bodies contains about 100,000 proteins with an average of 500 amino acids apiece. Consequently, there are about one trillion potential docking sites, or epitopes, where antibodies could mistakenly attach themselves to proteins in a healthy cell. The mutation response method employed by our adaptive immune system seems keyed to this number, producing antibodies that are statistically likely to mistakenly bond with healthy proteins slightly less than one in a trillion times, meaning that on average, they recognize only invading pathogens.

The research was funded by the NIH/National Institute of Allergy and Infectious Disease.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>