Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer gene MYC shown to activate gene involved in metastasis


Study points to importance of pathway in cancer progression

The cancer gene MYC is among the most commonly overexpressed oncogenes in human cancers. Most human cancers demonstrate high levels of MYC or its biological partners, including those of the breast, ovaries, lung, prostate, and skin, as well as leukemias and lymphomas. MYC is a regulator of other genes--a transcription factor--and scientists have been working for more than two decades to identify its target genes in order to understand how MYC causes so many cancers.

Now, scientists at The Wistar Institute have shown that MYC activates a gene called MTA1, which has been demonstrated by other researchers to regulate metastasis in a variety of cancers. While researchers have been exploring the possibility of blocking MTA1 to prevent metastasis, it was not previously known how MTA1 becomes activated in the first place. The study adds to the emerging picture of MYC’s role in cancer development and progression and identifies the pathway linking MYC and MTA1 as an area for further exploration into the genetics of metastasis. The study appears in Proceedings of the National Academy of Sciences and is available in the journal’s online "Early Edition."

"We and others have been working to understand what genes MYC turns on to cause malignant transformation," says Wistar associate professor Steven B. McMahon, Ph.D., senior author of the study. "Understanding metastasis is critical because patients rarely die of primary tumors--metastasis usually causes cancer deaths. Now, we have linked the well-known oncogene MYC to this target gene, MTA1, a key regulator of metastasis. Most importantly, if we block MYC’s ability to turn on MTA1, we block tumor formation. This is critical because it identifies a point in the metastasis pathway that can be targeted therapeutically."

Like the MYC cancer gene, MTA1 has been shown to play a role in a wide range of cancers, including breast and lung cancers and lymphomas. With the help of Wistar’s genomics facility headed by associate professor Louise C. Showe, Ph.D., McMahon and his colleagues sifted through nearly 10,000 genes before identifying MTA1 as a MYC target.

Among the pressing issues still to be resolved is understanding precisely why MYC’s activation of MTA1 leads to metastasis. In spite of the work still to be done, the first generation of drugs that inhibit MTA1 and its partners is already being developed, and McMahon’s study may inform this work. McMahon’s laboratory at Wistar continues to study other target genes of MYC in order to elucidate more fully how this oncogene acts in such a wide range of cancers.

Marion Wyce | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>