Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer gene MYC shown to activate gene involved in metastasis

13.09.2005


Study points to importance of pathway in cancer progression



The cancer gene MYC is among the most commonly overexpressed oncogenes in human cancers. Most human cancers demonstrate high levels of MYC or its biological partners, including those of the breast, ovaries, lung, prostate, and skin, as well as leukemias and lymphomas. MYC is a regulator of other genes--a transcription factor--and scientists have been working for more than two decades to identify its target genes in order to understand how MYC causes so many cancers.

Now, scientists at The Wistar Institute have shown that MYC activates a gene called MTA1, which has been demonstrated by other researchers to regulate metastasis in a variety of cancers. While researchers have been exploring the possibility of blocking MTA1 to prevent metastasis, it was not previously known how MTA1 becomes activated in the first place. The study adds to the emerging picture of MYC’s role in cancer development and progression and identifies the pathway linking MYC and MTA1 as an area for further exploration into the genetics of metastasis. The study appears in Proceedings of the National Academy of Sciences and is available in the journal’s online "Early Edition."


"We and others have been working to understand what genes MYC turns on to cause malignant transformation," says Wistar associate professor Steven B. McMahon, Ph.D., senior author of the study. "Understanding metastasis is critical because patients rarely die of primary tumors--metastasis usually causes cancer deaths. Now, we have linked the well-known oncogene MYC to this target gene, MTA1, a key regulator of metastasis. Most importantly, if we block MYC’s ability to turn on MTA1, we block tumor formation. This is critical because it identifies a point in the metastasis pathway that can be targeted therapeutically."

Like the MYC cancer gene, MTA1 has been shown to play a role in a wide range of cancers, including breast and lung cancers and lymphomas. With the help of Wistar’s genomics facility headed by associate professor Louise C. Showe, Ph.D., McMahon and his colleagues sifted through nearly 10,000 genes before identifying MTA1 as a MYC target.

Among the pressing issues still to be resolved is understanding precisely why MYC’s activation of MTA1 leads to metastasis. In spite of the work still to be done, the first generation of drugs that inhibit MTA1 and its partners is already being developed, and McMahon’s study may inform this work. McMahon’s laboratory at Wistar continues to study other target genes of MYC in order to elucidate more fully how this oncogene acts in such a wide range of cancers.

Marion Wyce | EurekAlert!
Further information:
http://www.wistar.org

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>