Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI neurobiologists uncover evidence of a ’memory code’

12.09.2005


Finding may significantly broaden understanding of how the brain selects and retains information



By examining how sounds are registered during the process of learning, UC Irvine neurobiologists have discovered a neural coding mechanism that the brain relies upon to register the intensity of memories based on the importance of the experience.

While neurobiologists have long hypothesized this type of neural coding, the study presents the first evidence that a "memory code" of any kind may exist. The UCI researchers believe that this code, as well as similar codes that may be discovered, will not only broaden our understanding of normal learning and memory but also may shed light on learning disorders. It may also one day be possible to manipulate these codes to control what and how we remember – not only basic sounds, but complicated information and events.


"This memory code may help explain both good and poor memory," said Norman Weinberger, a professor of neurobiology and behavior in UCI’s Center for the Neurobiology of Learning and Memory. "People tend to remember important experiences better than routine ones."

Weinberger and his colleagues found that when the brain uses this coding method, information is stored in a greater number of brain cells, which should result in a stronger memory. However, the researchers believe that if the brain fails to use the code, the resulting memory – even if it is an important one – would be weaker because fewer neurons would be involved.

Weinberger and postdoctoral researcher Richard Rutkowski discovered this coding system through studying how the primary auditory cortex responds to various sounds.

In the study, the researchers trained rats to press a bar to receive water when they heard a certain tone. The tone was varied in its importance to different rats as shown by their different levels of correct performance.

After brain mapping these test rats, the researchers found that the greater the importance of the tone, the greater the area of the auditory cortex that became tuned to it. The results in rats that received the same tones but were trained to a visual stimulus did not differ from those in untrained rats, showing that the behavioral importance of the tone, not its mere presence, was the critical factor.

Study results appear on the Online Early Edition of the Proceedings of the National Academy of Sciences. The National Institute on Deafness and Other Communication Disorders supported the effort.

About the University of California, Irvine: Celebrating 40 years of innovation, the University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.today.uci.edu
http://www.uci.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>