Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI neurobiologists uncover evidence of a ’memory code’

12.09.2005


Finding may significantly broaden understanding of how the brain selects and retains information



By examining how sounds are registered during the process of learning, UC Irvine neurobiologists have discovered a neural coding mechanism that the brain relies upon to register the intensity of memories based on the importance of the experience.

While neurobiologists have long hypothesized this type of neural coding, the study presents the first evidence that a "memory code" of any kind may exist. The UCI researchers believe that this code, as well as similar codes that may be discovered, will not only broaden our understanding of normal learning and memory but also may shed light on learning disorders. It may also one day be possible to manipulate these codes to control what and how we remember – not only basic sounds, but complicated information and events.


"This memory code may help explain both good and poor memory," said Norman Weinberger, a professor of neurobiology and behavior in UCI’s Center for the Neurobiology of Learning and Memory. "People tend to remember important experiences better than routine ones."

Weinberger and his colleagues found that when the brain uses this coding method, information is stored in a greater number of brain cells, which should result in a stronger memory. However, the researchers believe that if the brain fails to use the code, the resulting memory – even if it is an important one – would be weaker because fewer neurons would be involved.

Weinberger and postdoctoral researcher Richard Rutkowski discovered this coding system through studying how the primary auditory cortex responds to various sounds.

In the study, the researchers trained rats to press a bar to receive water when they heard a certain tone. The tone was varied in its importance to different rats as shown by their different levels of correct performance.

After brain mapping these test rats, the researchers found that the greater the importance of the tone, the greater the area of the auditory cortex that became tuned to it. The results in rats that received the same tones but were trained to a visual stimulus did not differ from those in untrained rats, showing that the behavioral importance of the tone, not its mere presence, was the critical factor.

Study results appear on the Online Early Edition of the Proceedings of the National Academy of Sciences. The National Institute on Deafness and Other Communication Disorders supported the effort.

About the University of California, Irvine: Celebrating 40 years of innovation, the University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.today.uci.edu
http://www.uci.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>