Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD study of nuclear receptors could change anti-inflammatory treatments

09.09.2005


Several nuclear receptor proteins appear to overlap in their ability to exert anti-inflammatory effects, according to new research by scientists at the University of California, San Diego (UCSD). Nuclear receptors are important drug targets for a number of diseases, for example, glucocorticoid receptors for asthma and arthritis. But use of drugs targeting these receptors is sometimes limited by unwelcome side effects. The new findings may suggest a way to overcome this obstacle.



In a paper being published in the September 9 issue of the journal Cell, Christopher Glass, M.D., Ph.D., professor of cellular and molecular medicine at the UCSD School of Medicine, and his colleagues show that three nuclear receptor proteins – glucocorticoid, PPAR gamma and LXR – can work together to repress the cellular responses to certain kinds of pro-inflammatory molecular signaling. These nuclear receptors are important in "turning off" inflammatory responses to bacteria or viruses and allowing the cells to return to a normal state.

"Basically, we are looking at a ’tuning system’ to maintain a proper level of immunity, but without an inappropriate inflammatory response that would contribute to a chronic disease state," Glass said.


The researchers have also, for the first time, identified on a genome-wide level how these proteins work to influence the body’s inflammatory response. By identifying the molecular mechanism by which each receptor inhibits particular genes involved in anti-viral responses, more powerful drugs could be developed to fight immune diseases such as arteriosclerosis and arthritis, with fewer side effects.

"We now have a molecular understanding of why inflammatory responses caused by certain infections are sensitive to glucocorticoid drugs for example, while others are resistant," said Glass. "These observations further explain how drugs used to inhibit one type of inflammation could basically cripple the immune system to respond to specific viral infections and make that disease much worse."

Glass’s studies of nuclear receptors have focused on their regulation of gene expression in the macrophage, a basic cell that recognizes structures or patterns on pathogens that aren’t present in normal cells. The macrophage is responsible for producing and responding to hormone-like molecules that control inflammation – important for the understanding of immune diseases such as arteriosclerosis, psoriasis and rheumatoid arthritis that are triggered by autoimmune responses. While macrophages and other immune cells are essential against infectious organisms, they can also promote chronic inflammatory diseases.

When the macrophage thinks it sees an infection, it "turns on" or expresses hundreds of genes, enabling the macrophage to communicate with other cells and combat infection. In some diseases, however, certain protein complexes become modified and begin to look like the proteins associated with bacteria or viruses. The macrophage misinterprets this pattern on a modified protein, which causes it to initiate an inflammatory response. In this work, the UCSD team looked at a number of pathogen-associated molecule patterns used to stimulate the macrophage, with the long-term goal of finding a way to manage inflammation without compromising the immune system.

While it had been shown in past studies that the macrophage responded to certain drugs, it was never studied on a genomic-wide level how receptors actually did the job of inhibiting the macrophage’s inflammatory responses. The patterns reported in the paper suggest that each of the receptors plays a slightly different role in how the macrophage mounts an inflammatory response, working in different but overlapping ways.

The findings also have potential clinical significance in showing how two or three nuclear receptors activated at the same time very dramatically shut down inflammatory responses. This suggests that the drug that works with one particular receptor, but with negative side effects, could be given at a lower dose along with different drugs targeting the other receptors. For example, one class of potent corticoid drugs used to treat severe asthma has many negative side effects, including high blood pressure, diabetes and obesity.

"What is of particular interest in this study," said Glass, "is that adding two drugs together could have a much more substantial interaction while using much less of each drug. This could result in much better therapeutic results with fewer side effects. The observation that these proteins can function together opens up new avenues of clinical investigation into the treatment of diseases."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>