Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD study of nuclear receptors could change anti-inflammatory treatments

09.09.2005


Several nuclear receptor proteins appear to overlap in their ability to exert anti-inflammatory effects, according to new research by scientists at the University of California, San Diego (UCSD). Nuclear receptors are important drug targets for a number of diseases, for example, glucocorticoid receptors for asthma and arthritis. But use of drugs targeting these receptors is sometimes limited by unwelcome side effects. The new findings may suggest a way to overcome this obstacle.



In a paper being published in the September 9 issue of the journal Cell, Christopher Glass, M.D., Ph.D., professor of cellular and molecular medicine at the UCSD School of Medicine, and his colleagues show that three nuclear receptor proteins – glucocorticoid, PPAR gamma and LXR – can work together to repress the cellular responses to certain kinds of pro-inflammatory molecular signaling. These nuclear receptors are important in "turning off" inflammatory responses to bacteria or viruses and allowing the cells to return to a normal state.

"Basically, we are looking at a ’tuning system’ to maintain a proper level of immunity, but without an inappropriate inflammatory response that would contribute to a chronic disease state," Glass said.


The researchers have also, for the first time, identified on a genome-wide level how these proteins work to influence the body’s inflammatory response. By identifying the molecular mechanism by which each receptor inhibits particular genes involved in anti-viral responses, more powerful drugs could be developed to fight immune diseases such as arteriosclerosis and arthritis, with fewer side effects.

"We now have a molecular understanding of why inflammatory responses caused by certain infections are sensitive to glucocorticoid drugs for example, while others are resistant," said Glass. "These observations further explain how drugs used to inhibit one type of inflammation could basically cripple the immune system to respond to specific viral infections and make that disease much worse."

Glass’s studies of nuclear receptors have focused on their regulation of gene expression in the macrophage, a basic cell that recognizes structures or patterns on pathogens that aren’t present in normal cells. The macrophage is responsible for producing and responding to hormone-like molecules that control inflammation – important for the understanding of immune diseases such as arteriosclerosis, psoriasis and rheumatoid arthritis that are triggered by autoimmune responses. While macrophages and other immune cells are essential against infectious organisms, they can also promote chronic inflammatory diseases.

When the macrophage thinks it sees an infection, it "turns on" or expresses hundreds of genes, enabling the macrophage to communicate with other cells and combat infection. In some diseases, however, certain protein complexes become modified and begin to look like the proteins associated with bacteria or viruses. The macrophage misinterprets this pattern on a modified protein, which causes it to initiate an inflammatory response. In this work, the UCSD team looked at a number of pathogen-associated molecule patterns used to stimulate the macrophage, with the long-term goal of finding a way to manage inflammation without compromising the immune system.

While it had been shown in past studies that the macrophage responded to certain drugs, it was never studied on a genomic-wide level how receptors actually did the job of inhibiting the macrophage’s inflammatory responses. The patterns reported in the paper suggest that each of the receptors plays a slightly different role in how the macrophage mounts an inflammatory response, working in different but overlapping ways.

The findings also have potential clinical significance in showing how two or three nuclear receptors activated at the same time very dramatically shut down inflammatory responses. This suggests that the drug that works with one particular receptor, but with negative side effects, could be given at a lower dose along with different drugs targeting the other receptors. For example, one class of potent corticoid drugs used to treat severe asthma has many negative side effects, including high blood pressure, diabetes and obesity.

"What is of particular interest in this study," said Glass, "is that adding two drugs together could have a much more substantial interaction while using much less of each drug. This could result in much better therapeutic results with fewer side effects. The observation that these proteins can function together opens up new avenues of clinical investigation into the treatment of diseases."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>