Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSD study of nuclear receptors could change anti-inflammatory treatments


Several nuclear receptor proteins appear to overlap in their ability to exert anti-inflammatory effects, according to new research by scientists at the University of California, San Diego (UCSD). Nuclear receptors are important drug targets for a number of diseases, for example, glucocorticoid receptors for asthma and arthritis. But use of drugs targeting these receptors is sometimes limited by unwelcome side effects. The new findings may suggest a way to overcome this obstacle.

In a paper being published in the September 9 issue of the journal Cell, Christopher Glass, M.D., Ph.D., professor of cellular and molecular medicine at the UCSD School of Medicine, and his colleagues show that three nuclear receptor proteins – glucocorticoid, PPAR gamma and LXR – can work together to repress the cellular responses to certain kinds of pro-inflammatory molecular signaling. These nuclear receptors are important in "turning off" inflammatory responses to bacteria or viruses and allowing the cells to return to a normal state.

"Basically, we are looking at a ’tuning system’ to maintain a proper level of immunity, but without an inappropriate inflammatory response that would contribute to a chronic disease state," Glass said.

The researchers have also, for the first time, identified on a genome-wide level how these proteins work to influence the body’s inflammatory response. By identifying the molecular mechanism by which each receptor inhibits particular genes involved in anti-viral responses, more powerful drugs could be developed to fight immune diseases such as arteriosclerosis and arthritis, with fewer side effects.

"We now have a molecular understanding of why inflammatory responses caused by certain infections are sensitive to glucocorticoid drugs for example, while others are resistant," said Glass. "These observations further explain how drugs used to inhibit one type of inflammation could basically cripple the immune system to respond to specific viral infections and make that disease much worse."

Glass’s studies of nuclear receptors have focused on their regulation of gene expression in the macrophage, a basic cell that recognizes structures or patterns on pathogens that aren’t present in normal cells. The macrophage is responsible for producing and responding to hormone-like molecules that control inflammation – important for the understanding of immune diseases such as arteriosclerosis, psoriasis and rheumatoid arthritis that are triggered by autoimmune responses. While macrophages and other immune cells are essential against infectious organisms, they can also promote chronic inflammatory diseases.

When the macrophage thinks it sees an infection, it "turns on" or expresses hundreds of genes, enabling the macrophage to communicate with other cells and combat infection. In some diseases, however, certain protein complexes become modified and begin to look like the proteins associated with bacteria or viruses. The macrophage misinterprets this pattern on a modified protein, which causes it to initiate an inflammatory response. In this work, the UCSD team looked at a number of pathogen-associated molecule patterns used to stimulate the macrophage, with the long-term goal of finding a way to manage inflammation without compromising the immune system.

While it had been shown in past studies that the macrophage responded to certain drugs, it was never studied on a genomic-wide level how receptors actually did the job of inhibiting the macrophage’s inflammatory responses. The patterns reported in the paper suggest that each of the receptors plays a slightly different role in how the macrophage mounts an inflammatory response, working in different but overlapping ways.

The findings also have potential clinical significance in showing how two or three nuclear receptors activated at the same time very dramatically shut down inflammatory responses. This suggests that the drug that works with one particular receptor, but with negative side effects, could be given at a lower dose along with different drugs targeting the other receptors. For example, one class of potent corticoid drugs used to treat severe asthma has many negative side effects, including high blood pressure, diabetes and obesity.

"What is of particular interest in this study," said Glass, "is that adding two drugs together could have a much more substantial interaction while using much less of each drug. This could result in much better therapeutic results with fewer side effects. The observation that these proteins can function together opens up new avenues of clinical investigation into the treatment of diseases."

Debra Kain | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>