Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Activated vitamin D and NSAIDs form one-two punch against prostate cancer cells


Low doses of the active form of vitamin D and non-steroidal anti-inflammatory drugs, taken in combination, have been shown to act as a powerful one-two punch that knocks down the growth of prostate cancer cells.

In a study published in the journal "Cancer Research", scientists from Stanford University discovered that the amount of both -- activated vitamin D, or calcitriol, and the NSAIDs -- could be reduced by half to one-tenth the dosage to thwart prostate cancer cell growth in cell lines and primary tissue cultures.

If work in animal models and human trials confirm the findings, the drug combination may help to keep the NSAID family of drugs among the pharmaceutical choices for the prevention and treatment of cancer. This list includes ibuprofen, indomethacin and naproxen, in addition to other so-called COX-2 inhibitors linked to increased risk for cardiovascular disease, including Vioxx® and Celebrex®.

"NSAIDs have their own risks," said David Feldman, M.D., professor of Medicine in the Division of Endocrinology, Gerontology and Metabolism at the Stanford University School of Medicine. "So, we have to be careful even with lower doses and we still need to watch the patients very closely if we intend to keep them on these drugs for extended periods of time. But we are aiming to find doses that are less toxic and far more tolerable for the patient."

As outlined in their study, the Stanford scientists discovered that vitamin D, known as the "sunshine vitamin," works to limit the growth of prostate cancer cells by interfering with the same molecules attacked by NSAIDs -- the prostaglandin/COX-2 pathway.

Prostaglandins are responsible for activating the inflammatory response that results in pain and fever. NSAIDs work by blocking an enzyme called cyclooxygenase-2 or COX-2 which is essential for prostaglandin synthesis, thereby relieving some of the effects of pain and fever.

In this study, activated vitamin D or calcitriol was shown to act as a triple threat against this pathway, in prostate cancer cells:

  • First, it limits the expression of a key enzyme needed to synthesize prostaglandins into COX-2.
  • Second, it increases the expression of an enzyme that rapidly disassembles active prostaglandin molecules, thus promoting the breakdown of the hormone.
  • Third, the scientists discovered that calcitriol inhibits the production of two cell receptors used by prostaglandins to regulate gene expression and control tumor proliferation.

While the scientists showed that activated vitamin D, calcitriol, works by itself to limit prostate cancer growth, it is equally effective in much smaller doses when used in combination with NSAIDs. Furthermore, calcitriol dramatically reduces the amount of NSAIDs necessary to curb prostate cancer cell growth.

This is particularly important now, in light of recent studies showing that some NSAIDs that are selective for COX-2 targeting, such as rofecoxib (Vioxx®) and celecoxib (Celebrex®), are linked to cardiovascular disease at their prescribed doses.

While their studies provide insight into cellular activities controlled by both calcitriol and the NSAIDs, Feldman and his colleagues remain cautious about advancing their new-found understanding of prostaglandin chemistry into patients.

"We need to verify that vitamin D and NSAIDs work in synergy not just in these cell lines, but also work in the same manner, in humans which have a vastly more complex physiology than simple cells in a culture plate," Feldman said.

Vitamin D is converted in the liver and kidney to the active form called calcitriol, a hormone that has widespread actions in the body. The Feldman laboratory used calcitriol in the experiments reported in the Cancer Research article. Vitamin D in the form available over the counter is useful for protection of bones, but would not achieve the therapeutic levels of calcitriol needed to inhibit cancer cell growth, since the body has mechanisms to limit its activation to calcitriol, Feldman explained.

Russell Vanderboom, Ph.D. | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>