Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activated vitamin D and NSAIDs form one-two punch against prostate cancer cells

02.09.2005


Low doses of the active form of vitamin D and non-steroidal anti-inflammatory drugs, taken in combination, have been shown to act as a powerful one-two punch that knocks down the growth of prostate cancer cells.

In a study published in the journal "Cancer Research", scientists from Stanford University discovered that the amount of both -- activated vitamin D, or calcitriol, and the NSAIDs -- could be reduced by half to one-tenth the dosage to thwart prostate cancer cell growth in cell lines and primary tissue cultures.

If work in animal models and human trials confirm the findings, the drug combination may help to keep the NSAID family of drugs among the pharmaceutical choices for the prevention and treatment of cancer. This list includes ibuprofen, indomethacin and naproxen, in addition to other so-called COX-2 inhibitors linked to increased risk for cardiovascular disease, including Vioxx® and Celebrex®.



"NSAIDs have their own risks," said David Feldman, M.D., professor of Medicine in the Division of Endocrinology, Gerontology and Metabolism at the Stanford University School of Medicine. "So, we have to be careful even with lower doses and we still need to watch the patients very closely if we intend to keep them on these drugs for extended periods of time. But we are aiming to find doses that are less toxic and far more tolerable for the patient."

As outlined in their study, the Stanford scientists discovered that vitamin D, known as the "sunshine vitamin," works to limit the growth of prostate cancer cells by interfering with the same molecules attacked by NSAIDs -- the prostaglandin/COX-2 pathway.

Prostaglandins are responsible for activating the inflammatory response that results in pain and fever. NSAIDs work by blocking an enzyme called cyclooxygenase-2 or COX-2 which is essential for prostaglandin synthesis, thereby relieving some of the effects of pain and fever.

In this study, activated vitamin D or calcitriol was shown to act as a triple threat against this pathway, in prostate cancer cells:

  • First, it limits the expression of a key enzyme needed to synthesize prostaglandins into COX-2.
  • Second, it increases the expression of an enzyme that rapidly disassembles active prostaglandin molecules, thus promoting the breakdown of the hormone.
  • Third, the scientists discovered that calcitriol inhibits the production of two cell receptors used by prostaglandins to regulate gene expression and control tumor proliferation.

While the scientists showed that activated vitamin D, calcitriol, works by itself to limit prostate cancer growth, it is equally effective in much smaller doses when used in combination with NSAIDs. Furthermore, calcitriol dramatically reduces the amount of NSAIDs necessary to curb prostate cancer cell growth.

This is particularly important now, in light of recent studies showing that some NSAIDs that are selective for COX-2 targeting, such as rofecoxib (Vioxx®) and celecoxib (Celebrex®), are linked to cardiovascular disease at their prescribed doses.

While their studies provide insight into cellular activities controlled by both calcitriol and the NSAIDs, Feldman and his colleagues remain cautious about advancing their new-found understanding of prostaglandin chemistry into patients.

"We need to verify that vitamin D and NSAIDs work in synergy not just in these cell lines, but also work in the same manner, in humans which have a vastly more complex physiology than simple cells in a culture plate," Feldman said.

Vitamin D is converted in the liver and kidney to the active form called calcitriol, a hormone that has widespread actions in the body. The Feldman laboratory used calcitriol in the experiments reported in the Cancer Research article. Vitamin D in the form available over the counter is useful for protection of bones, but would not achieve the therapeutic levels of calcitriol needed to inhibit cancer cell growth, since the body has mechanisms to limit its activation to calcitriol, Feldman explained.

Russell Vanderboom, Ph.D. | EurekAlert!
Further information:
http://www.aacr.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>