Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opiate drugs increase vulnerability to stress

30.08.2005


Rats given morphine show bigger biological and behavioral signs of stress-induced anxiety even after going off the drug

A new study has found that opiate drugs such as morphine leave animals more vulnerable to stress. This means that stress and opiates are in a vicious cycle: Not only does stress trigger drug use, but in return the drug leaves animals more vulnerable to stress. The study, conducted at the University of New South Wales, helps to explain why people who use opiates such as heroin have very high rates of anxiety problems, including post-traumatic stress disorder, even after they stop using. That emotional fragility can also make them more likely to start using again.

The study appears in the current issue of the journal Behavioral Neuroscience, which is published by the American Psychological Association (APA). Understanding how opiate users respond to and cope with stress may lead to better treatment and help prevent relapses. Co-author Gavan McNally, PhD, notes that heroin is the most commonly used illicit opiate, followed perhaps by morphine. In medical settings, pethidine, fentanyl, morphine and codeine are typically used.



McNally and his colleagues conducted four experiments with rats, injecting them with either morphine or saline solution every day for 10 days. Then, either one or seven days after the final injection, they gently restrained each rat for 30 minutes as a form of stress.

The team then measured the rats’ biological responses to the restraint stress. They also studied behaviors that reflect anxiety, checking the rats’ levels of social interaction and general activity. The researchers tested anxiety responses for three different dose levels and different durations of exposure (0, 1, 5 or 10 days).

In the absence of stress, the opiate-treated rats were exactly the same as the control rats. Only when the animals were exposed to a stressor were there marked differences in nervous-system and behavioral responses. For example, in terms of anxiety, the impact of stress was twice as great for the morphine-treated rats as for the saline-treated rats. Whereas stress reduced social interaction by about 31 percent in the saline-treated animals, it reduced social interaction by 68 percent in the morphine-treated animals.

Thus, exposure to morphine left those rats significantly more anxious in response to stress. This effect was sensitive to both dose and duration: The longer the duration or the higher the dose of morphine, the greater the difference in anxiety between morphine- and saline-treated rats.

The authors say this is the first important evidence that opiate use increases subsequent vulnerability to stress – a tough knot to untie given that stress leads to drug use. The results also were first to show that the vulnerability could last at least a week, evidence that the altered response was independent of any recent effect of the opiate or of opiate withdrawal.

McNally points out that brief exposure to opiates, of five or fewer days, was not enough to change vulnerability to stress. He says, "It appears the development of opiate dependence is the critical variable, and there are marked individual differences in humans in the development of dependence. A few days of codeine to relieve post-operative pain are unlikely to lead to the development of dependence."

Because rodent nervous systems are so like ours, animal models allow neuroscientists to study the behavioral and brain mechanisms for drug addiction. McNally says, "Our goal is the translation of these findings in the clinical domain. Our data suggest that implementing treatments that are designed to reduce vulnerability to stress – such as cognitive-behavioral therapy, pharmacological approaches, or both – in opiate addicts may be therapeutically useful."

As for why opiate exposure raises vulnerability to stress, the authors speculate that opiates may, by altering the expression of specific anxiety-related genes, prime the nervous system in a lasting way to be more vulnerable to stress. McNally notes the paradox that drugs used to escape from stress instead may heighten its impact.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>