Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opiate drugs increase vulnerability to stress

30.08.2005


Rats given morphine show bigger biological and behavioral signs of stress-induced anxiety even after going off the drug

A new study has found that opiate drugs such as morphine leave animals more vulnerable to stress. This means that stress and opiates are in a vicious cycle: Not only does stress trigger drug use, but in return the drug leaves animals more vulnerable to stress. The study, conducted at the University of New South Wales, helps to explain why people who use opiates such as heroin have very high rates of anxiety problems, including post-traumatic stress disorder, even after they stop using. That emotional fragility can also make them more likely to start using again.

The study appears in the current issue of the journal Behavioral Neuroscience, which is published by the American Psychological Association (APA). Understanding how opiate users respond to and cope with stress may lead to better treatment and help prevent relapses. Co-author Gavan McNally, PhD, notes that heroin is the most commonly used illicit opiate, followed perhaps by morphine. In medical settings, pethidine, fentanyl, morphine and codeine are typically used.



McNally and his colleagues conducted four experiments with rats, injecting them with either morphine or saline solution every day for 10 days. Then, either one or seven days after the final injection, they gently restrained each rat for 30 minutes as a form of stress.

The team then measured the rats’ biological responses to the restraint stress. They also studied behaviors that reflect anxiety, checking the rats’ levels of social interaction and general activity. The researchers tested anxiety responses for three different dose levels and different durations of exposure (0, 1, 5 or 10 days).

In the absence of stress, the opiate-treated rats were exactly the same as the control rats. Only when the animals were exposed to a stressor were there marked differences in nervous-system and behavioral responses. For example, in terms of anxiety, the impact of stress was twice as great for the morphine-treated rats as for the saline-treated rats. Whereas stress reduced social interaction by about 31 percent in the saline-treated animals, it reduced social interaction by 68 percent in the morphine-treated animals.

Thus, exposure to morphine left those rats significantly more anxious in response to stress. This effect was sensitive to both dose and duration: The longer the duration or the higher the dose of morphine, the greater the difference in anxiety between morphine- and saline-treated rats.

The authors say this is the first important evidence that opiate use increases subsequent vulnerability to stress – a tough knot to untie given that stress leads to drug use. The results also were first to show that the vulnerability could last at least a week, evidence that the altered response was independent of any recent effect of the opiate or of opiate withdrawal.

McNally points out that brief exposure to opiates, of five or fewer days, was not enough to change vulnerability to stress. He says, "It appears the development of opiate dependence is the critical variable, and there are marked individual differences in humans in the development of dependence. A few days of codeine to relieve post-operative pain are unlikely to lead to the development of dependence."

Because rodent nervous systems are so like ours, animal models allow neuroscientists to study the behavioral and brain mechanisms for drug addiction. McNally says, "Our goal is the translation of these findings in the clinical domain. Our data suggest that implementing treatments that are designed to reduce vulnerability to stress – such as cognitive-behavioral therapy, pharmacological approaches, or both – in opiate addicts may be therapeutically useful."

As for why opiate exposure raises vulnerability to stress, the authors speculate that opiates may, by altering the expression of specific anxiety-related genes, prime the nervous system in a lasting way to be more vulnerable to stress. McNally notes the paradox that drugs used to escape from stress instead may heighten its impact.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>