Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmless virus may hold key to more effective HIV drug discovery

29.08.2005


New phage display technique successful in identifying compounds that show potential to overcome drug resistance

A simple, harmless virus might hold the key to the more effective and efficient development of HIV and anti-viral drugs, UCI chemical biologists have found. In order to better identify compounds that can outmaneuver a virus’ effort to mutate and multiply, Gregory Weiss and Allison Olszewski employed this virus, called a bacteriophage, to learn how a HIV protein could respond to a new class of anti-viral molecules they have discovered.

By constantly mutating into new variations, HIV, in particular, has been very skillful at developing resistance to broad-spectrum methods to inhibit its expansion. Because of this, the development of effective HIV drugs has been difficult and expensive.



Weiss and Olszewski found that the bacteriophage can model millions of different mutational variants of an HIV protein called Nef. Knowing how the entire population of Nef variants responds to new drugs gives researchers greater ability to identify broad-spectrum, anti-HIV compounds. This approach, Weiss said, can make drug discovery efforts for other anti-viral therapies faster and more effective. Study results appear in online version of the Journal of the American Chemical Society.

"Viruses are clever about mutating to defeat the best efforts of chemists and biologists," said Weiss, an assistant professor of chemistry and molecular biology and biochemistry. "By recruiting a harmless virus, we’re learning how HIV will respond to new classes of anti-viral drugs before these compounds are tested in the clinic, which is currently an expensive and time-consuming process."

The Weiss laboratory specializes in developing massive libraries of proteins that can potentially target and bind to other proteins, using a process called phage display. In this study, Weiss and Olszewski first created one such library by attaching the Nef protein onto the bacteriophage, which was then coaxed into synthesizing the millions of mutational variants of Nef. The researchers then targeted this library, which they call an allelome, with a second library of small-molecule compounds in order to identify the specific compounds that could target the entire population of Nef mutational variants. The results suggest chemically simpler, more flexible compounds could better accommodate viral mutations.

The research is part of a UCI program aimed at expanding the anti-HIV drug arsenal. The program includes National Academy of Sciences member Larry Overman in the Department of Chemistry, who together with co-workers synthesized the small-molecules used in the study. New anti-HIV compounds are being tested by Dr. W. Ed Robinson, Jr. in the Department of Pathology.

Weiss and Olszewski have made their method freely available to the scientific research community. Olszewski is a fourth-year graduate student in the Weiss laboratory. The study was largely supported by a Young Investigator Award to Weiss from the Beckman Foundation.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>