Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmless virus may hold key to more effective HIV drug discovery

29.08.2005


New phage display technique successful in identifying compounds that show potential to overcome drug resistance

A simple, harmless virus might hold the key to the more effective and efficient development of HIV and anti-viral drugs, UCI chemical biologists have found. In order to better identify compounds that can outmaneuver a virus’ effort to mutate and multiply, Gregory Weiss and Allison Olszewski employed this virus, called a bacteriophage, to learn how a HIV protein could respond to a new class of anti-viral molecules they have discovered.

By constantly mutating into new variations, HIV, in particular, has been very skillful at developing resistance to broad-spectrum methods to inhibit its expansion. Because of this, the development of effective HIV drugs has been difficult and expensive.



Weiss and Olszewski found that the bacteriophage can model millions of different mutational variants of an HIV protein called Nef. Knowing how the entire population of Nef variants responds to new drugs gives researchers greater ability to identify broad-spectrum, anti-HIV compounds. This approach, Weiss said, can make drug discovery efforts for other anti-viral therapies faster and more effective. Study results appear in online version of the Journal of the American Chemical Society.

"Viruses are clever about mutating to defeat the best efforts of chemists and biologists," said Weiss, an assistant professor of chemistry and molecular biology and biochemistry. "By recruiting a harmless virus, we’re learning how HIV will respond to new classes of anti-viral drugs before these compounds are tested in the clinic, which is currently an expensive and time-consuming process."

The Weiss laboratory specializes in developing massive libraries of proteins that can potentially target and bind to other proteins, using a process called phage display. In this study, Weiss and Olszewski first created one such library by attaching the Nef protein onto the bacteriophage, which was then coaxed into synthesizing the millions of mutational variants of Nef. The researchers then targeted this library, which they call an allelome, with a second library of small-molecule compounds in order to identify the specific compounds that could target the entire population of Nef mutational variants. The results suggest chemically simpler, more flexible compounds could better accommodate viral mutations.

The research is part of a UCI program aimed at expanding the anti-HIV drug arsenal. The program includes National Academy of Sciences member Larry Overman in the Department of Chemistry, who together with co-workers synthesized the small-molecules used in the study. New anti-HIV compounds are being tested by Dr. W. Ed Robinson, Jr. in the Department of Pathology.

Weiss and Olszewski have made their method freely available to the scientific research community. Olszewski is a fourth-year graduate student in the Weiss laboratory. The study was largely supported by a Young Investigator Award to Weiss from the Beckman Foundation.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>