Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmless virus may hold key to more effective HIV drug discovery

29.08.2005


New phage display technique successful in identifying compounds that show potential to overcome drug resistance

A simple, harmless virus might hold the key to the more effective and efficient development of HIV and anti-viral drugs, UCI chemical biologists have found. In order to better identify compounds that can outmaneuver a virus’ effort to mutate and multiply, Gregory Weiss and Allison Olszewski employed this virus, called a bacteriophage, to learn how a HIV protein could respond to a new class of anti-viral molecules they have discovered.

By constantly mutating into new variations, HIV, in particular, has been very skillful at developing resistance to broad-spectrum methods to inhibit its expansion. Because of this, the development of effective HIV drugs has been difficult and expensive.



Weiss and Olszewski found that the bacteriophage can model millions of different mutational variants of an HIV protein called Nef. Knowing how the entire population of Nef variants responds to new drugs gives researchers greater ability to identify broad-spectrum, anti-HIV compounds. This approach, Weiss said, can make drug discovery efforts for other anti-viral therapies faster and more effective. Study results appear in online version of the Journal of the American Chemical Society.

"Viruses are clever about mutating to defeat the best efforts of chemists and biologists," said Weiss, an assistant professor of chemistry and molecular biology and biochemistry. "By recruiting a harmless virus, we’re learning how HIV will respond to new classes of anti-viral drugs before these compounds are tested in the clinic, which is currently an expensive and time-consuming process."

The Weiss laboratory specializes in developing massive libraries of proteins that can potentially target and bind to other proteins, using a process called phage display. In this study, Weiss and Olszewski first created one such library by attaching the Nef protein onto the bacteriophage, which was then coaxed into synthesizing the millions of mutational variants of Nef. The researchers then targeted this library, which they call an allelome, with a second library of small-molecule compounds in order to identify the specific compounds that could target the entire population of Nef mutational variants. The results suggest chemically simpler, more flexible compounds could better accommodate viral mutations.

The research is part of a UCI program aimed at expanding the anti-HIV drug arsenal. The program includes National Academy of Sciences member Larry Overman in the Department of Chemistry, who together with co-workers synthesized the small-molecules used in the study. New anti-HIV compounds are being tested by Dr. W. Ed Robinson, Jr. in the Department of Pathology.

Weiss and Olszewski have made their method freely available to the scientific research community. Olszewski is a fourth-year graduate student in the Weiss laboratory. The study was largely supported by a Young Investigator Award to Weiss from the Beckman Foundation.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>