Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VCU study shows hormone-like molecule kills cells that cause inflammation in allergic disease

25.08.2005


Virginia Commonwealth University immunologists studying mast cells, known to play a central role in asthma and allergic disease, have identified a hormone-like molecule that can kill these cells by programming them to die in studies with mice.



The findings move researchers another step closer to understanding the life cycle of mast cells, and may help researchers develop new treatments for allergy and inflammatory responses in arthritis, multiple sclerosis and heart disease.

In the Journal of Immunology, published online Aug. 23, researchers demonstrated the means by which a cytokine called interferon gamma (IFNy) induces death of developing mast cells in a mouse model system. Although IFNy induced cell death in developing mast cells, it did not affect the survival of mast cells that had already undergone differentiation.


“We believe that cytokines, such as interferon gamma, are an important means of controlling mast cell function in the body,” said John J. Ryan, Ph.D., associate professor of biology at VCU and lead author of the study. “Because mast cells cause inflammation, regulating how many mast cells the body makes, where they go, what they do, and when they die can have a huge impact on health and disease.

“For example, there has been one report of a patient with mastocytosis, which is a type of pre-leukemia where mast cells proliferate abnormally, that showed improvement with IFNy treatment,” he said. “It is possible that other mast cell-related diseases, such as asthma, may respond to IFNy treatment.”

According to Ryan, mast cells are packed with granules containing histamine and are present in nearly all tissues except blood. When mast cells are activated, inflammatory substances such as histamine, heparin and a number of cytokines are rapidly released into the tissues and blood, promoting an allergic reaction.

Mast cells are believed to be generated by different precursor cells in the bone marrow. In the in vitro portion of the study, researchers used mouse bone marrow cells containing the stem cells that give rise to mast cells. They cultured these precursor cells in conditions that allow mast cells to develop, and then added IFNy to some of these cultures. A high rate of cell death yielding no living mast cells was observed in the cultures that received IFNy.

Similar results were reported in vivo using a mouse model. Mice with a mutation that causes them to overproduce IFNy were used, and again, researchers observed a significant decrease in mast cell numbers due to the excess of IFNy. When researchers tried to culture mast cells from the bone marrow of these mice, the mast cells died.

Furthermore, a separate strain of mice with the same mutation as the first strain, but that had also been engineered to prevent IFNy production, were found to have almost as many mast cells as normal mice, if not more. They concluded that the presence of high IFNy levels blocked mast cell development.

This research was supported by a grant from the National Institutes of Health.

Ryan collaborated with colleagues in the VCU Department of Biology, and the Department of Biochemistry at St. Jude Children’s Research Hospital in Memphis, Tenn.

About VCU and the VCU Medical Center: Located on two downtown campuses in Richmond, Va., Virginia Commonwealth University is ranked nationally by the Carnegie Foundation as a top research institution and enrolls more than 28,500 students in more than 181 certificate, undergraduate, graduate, professional and doctoral programs in the arts, sciences and humanities in 15 schools and one college. Forty of the university’s programs are unique in Virginia, and 20 graduate and professional programs have been ranked by U.S. News & World Report as among the best of their kind. MCV Hospitals, clinics and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the leading academic medical centers in the country.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>