Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


VCU study shows hormone-like molecule kills cells that cause inflammation in allergic disease


Virginia Commonwealth University immunologists studying mast cells, known to play a central role in asthma and allergic disease, have identified a hormone-like molecule that can kill these cells by programming them to die in studies with mice.

The findings move researchers another step closer to understanding the life cycle of mast cells, and may help researchers develop new treatments for allergy and inflammatory responses in arthritis, multiple sclerosis and heart disease.

In the Journal of Immunology, published online Aug. 23, researchers demonstrated the means by which a cytokine called interferon gamma (IFNy) induces death of developing mast cells in a mouse model system. Although IFNy induced cell death in developing mast cells, it did not affect the survival of mast cells that had already undergone differentiation.

“We believe that cytokines, such as interferon gamma, are an important means of controlling mast cell function in the body,” said John J. Ryan, Ph.D., associate professor of biology at VCU and lead author of the study. “Because mast cells cause inflammation, regulating how many mast cells the body makes, where they go, what they do, and when they die can have a huge impact on health and disease.

“For example, there has been one report of a patient with mastocytosis, which is a type of pre-leukemia where mast cells proliferate abnormally, that showed improvement with IFNy treatment,” he said. “It is possible that other mast cell-related diseases, such as asthma, may respond to IFNy treatment.”

According to Ryan, mast cells are packed with granules containing histamine and are present in nearly all tissues except blood. When mast cells are activated, inflammatory substances such as histamine, heparin and a number of cytokines are rapidly released into the tissues and blood, promoting an allergic reaction.

Mast cells are believed to be generated by different precursor cells in the bone marrow. In the in vitro portion of the study, researchers used mouse bone marrow cells containing the stem cells that give rise to mast cells. They cultured these precursor cells in conditions that allow mast cells to develop, and then added IFNy to some of these cultures. A high rate of cell death yielding no living mast cells was observed in the cultures that received IFNy.

Similar results were reported in vivo using a mouse model. Mice with a mutation that causes them to overproduce IFNy were used, and again, researchers observed a significant decrease in mast cell numbers due to the excess of IFNy. When researchers tried to culture mast cells from the bone marrow of these mice, the mast cells died.

Furthermore, a separate strain of mice with the same mutation as the first strain, but that had also been engineered to prevent IFNy production, were found to have almost as many mast cells as normal mice, if not more. They concluded that the presence of high IFNy levels blocked mast cell development.

This research was supported by a grant from the National Institutes of Health.

Ryan collaborated with colleagues in the VCU Department of Biology, and the Department of Biochemistry at St. Jude Children’s Research Hospital in Memphis, Tenn.

About VCU and the VCU Medical Center: Located on two downtown campuses in Richmond, Va., Virginia Commonwealth University is ranked nationally by the Carnegie Foundation as a top research institution and enrolls more than 28,500 students in more than 181 certificate, undergraduate, graduate, professional and doctoral programs in the arts, sciences and humanities in 15 schools and one college. Forty of the university’s programs are unique in Virginia, and 20 graduate and professional programs have been ranked by U.S. News & World Report as among the best of their kind. MCV Hospitals, clinics and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the leading academic medical centers in the country.

Sathya Achia-Abraham | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>