Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study points the way to more nutritious animal feed

16.08.2005


Researchers at Duke University Medical Center have traced the biochemical pathway by which plants build a compound that compromises the quality of corn and soybeans as an animal feed. Their studies indicate that it is feasible to engineer such plants to significantly improve their quality as animal feeds -- a potentially important boon to the hog and poultry industries, said the researchers



The researchers, led by Howard Hughes Medical Institute investigator John York, published their findings the week of August 15 in the online Early Edition of the Proceedings of the National Academy of Sciences. Lead author on the paper was Jill Stevenson-Paulik in the York laboratory. Their research was supported by the National Institutes of Health.

In their studies, the researchers sought to understand the biochemical pathway that leads to the synthesis in plants of the chemical called phytate. In the plant, this molecule is a regulator of signaling in the cell; and in seeds, it acts as a phosphate storage molecule.


Phytate also acts as an "antinutrient" for animals, mainly pigs and chickens, that consume such grains, said Stevenson-Paulik. "Phytate is a very abundant compound in plant seeds that compromises the nutrition in the animals that consume it as their main food source. It binds such minerals as calcium and iron very well, and since it is not digested, animals that consume grains with phytate will lose these minerals as the phytate passes through their gut."

What’s more, said the researchers, such excreted phytate contributes to environmental phosphorus pollution, because it washes into surface waters causing the abnormal growth of aquatic plant life called eutrophication.

According to Stevenson-Paulik, creating low-phytate strains of feed grains was hindered by the lack of knowledge about the later biochemical pathways by which phytate is synthesized in plants.

In their studies, Stevenson-Paulik, York and their colleagues drew on their previous studies in yeast that enabled them to understand the biochemical pathways for producing phytate. Using those insights, they searched for counterpart genes in the mustard plant Arabidopsis -- a widely used model plant in genetic studies.

Their analysis revealed that the genes for two particular enzymatic regulatory switches, called kinases, were central to the final steps of phytate synthesis. What’s more, they found that genetic mutations that knocked out both these switches -- called AtlPK1 and AtlPK2_ -- nearly eliminated phytate production in the resulting Arabidopsis seeds.

Said York, "Perhaps one of the most important aspects of Jill’s work is the finding that it wasn’t just knocking out the last step in phytate synthesis that was important. Knocking out the last two steps really reduced seed phytate. And what was very unexpected and quite significant is that just knocking out one gene resulted in a buildup of toxic precursor compounds in the seeds." Also, found the researchers, the phytate-eliminating mutations did not compromise seed yield, and also increased the phosphate levels in the seeds.

"The amount of free phosphate in the double mutant is dramatically increased over what is found in nature," said Stevenson-Paulik. "And that has a great benefit in terms of nutrition, because it provides more available phosphorous for the animals that would eat grains with such properties."

According to York, a patent on the low-phytate strains has been applied for, and discussions have been initiated with feed companies about production of such grains. "The next step is to move this process into a commercial environment so that companies can begin producing low-phytate strains in their crop line," he said.

Dennnis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>