Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study points the way to more nutritious animal feed

16.08.2005


Researchers at Duke University Medical Center have traced the biochemical pathway by which plants build a compound that compromises the quality of corn and soybeans as an animal feed. Their studies indicate that it is feasible to engineer such plants to significantly improve their quality as animal feeds -- a potentially important boon to the hog and poultry industries, said the researchers



The researchers, led by Howard Hughes Medical Institute investigator John York, published their findings the week of August 15 in the online Early Edition of the Proceedings of the National Academy of Sciences. Lead author on the paper was Jill Stevenson-Paulik in the York laboratory. Their research was supported by the National Institutes of Health.

In their studies, the researchers sought to understand the biochemical pathway that leads to the synthesis in plants of the chemical called phytate. In the plant, this molecule is a regulator of signaling in the cell; and in seeds, it acts as a phosphate storage molecule.


Phytate also acts as an "antinutrient" for animals, mainly pigs and chickens, that consume such grains, said Stevenson-Paulik. "Phytate is a very abundant compound in plant seeds that compromises the nutrition in the animals that consume it as their main food source. It binds such minerals as calcium and iron very well, and since it is not digested, animals that consume grains with phytate will lose these minerals as the phytate passes through their gut."

What’s more, said the researchers, such excreted phytate contributes to environmental phosphorus pollution, because it washes into surface waters causing the abnormal growth of aquatic plant life called eutrophication.

According to Stevenson-Paulik, creating low-phytate strains of feed grains was hindered by the lack of knowledge about the later biochemical pathways by which phytate is synthesized in plants.

In their studies, Stevenson-Paulik, York and their colleagues drew on their previous studies in yeast that enabled them to understand the biochemical pathways for producing phytate. Using those insights, they searched for counterpart genes in the mustard plant Arabidopsis -- a widely used model plant in genetic studies.

Their analysis revealed that the genes for two particular enzymatic regulatory switches, called kinases, were central to the final steps of phytate synthesis. What’s more, they found that genetic mutations that knocked out both these switches -- called AtlPK1 and AtlPK2_ -- nearly eliminated phytate production in the resulting Arabidopsis seeds.

Said York, "Perhaps one of the most important aspects of Jill’s work is the finding that it wasn’t just knocking out the last step in phytate synthesis that was important. Knocking out the last two steps really reduced seed phytate. And what was very unexpected and quite significant is that just knocking out one gene resulted in a buildup of toxic precursor compounds in the seeds." Also, found the researchers, the phytate-eliminating mutations did not compromise seed yield, and also increased the phosphate levels in the seeds.

"The amount of free phosphate in the double mutant is dramatically increased over what is found in nature," said Stevenson-Paulik. "And that has a great benefit in terms of nutrition, because it provides more available phosphorous for the animals that would eat grains with such properties."

According to York, a patent on the low-phytate strains has been applied for, and discussions have been initiated with feed companies about production of such grains. "The next step is to move this process into a commercial environment so that companies can begin producing low-phytate strains in their crop line," he said.

Dennnis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>