Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study suggests protein may be early warning for ovarian cancer


Penn State College of Medicine researchers have found a signal that could lead to earlier detection and treatment of ovarian cancer.

The Penn State team of scientists led by principal investigator Kathleen M. Mulder, Ph.D., professor of pharmacology, and working in conjunction with a researcher from the Center for Cancer Research, National Cancer Institute in Bethesda, Md., studied "km23," a protein that helps to direct protein traffic in the cell. Mulder’s team has found that at least 42 percent of ovarian cancer patient tumor tissues have alterations in km23. No similar alterations in km23 were detectable in normal human tissues, suggesting that it may be both a diagnostic indicator for the development of ovarian cancer and a possible target for cancer therapies. "While only close to half of ovarian cancer patients may have defects in km23, our results are still highly significant because there is no clinically useful screening test available for detection of ovarian cancer," said Mulder.

Additional studies are under way to continue the analyses of km23 abnormalities in specimens from women with ovarian cancer, and to determine whether different km23 alterations exist in other solid tumors, such as breast and colon cancer. "The next step is to develop a screening test for early detection of the km23 alterations in the blood of ovarian cancer patients," Mulder said. In addition, studies are under way to develop drugs that would target km23 and override the defects caused by the km23 alterations in the cancer cells. "The plan is to be able to use the screening test to identify those patients who would benefit from the anti-cancer drugs we will be developing using km23 as the target," Mulder said. "In the pharmaceutical industry, this is often referred to as ’personalized medicine,’ meaning that each patient can be checked for alterations in specific genes and their treatment targeted for the alterations specific to their cancer."

Epithelial ovarian cancer is often diagnosed at an advanced stage and accounts for more than 164,000 deaths annually. Despite advances in surgical techniques and chemotherapy, overall survival rates for women with ovarian cancer have not improved significantly because of late detection, often after the disease has already spread to remote organs. The identification of a potential early warning signal and a possible therapeutic target for the disease could lead to improved survival rates.

km23 is responsible, in part, for the movement of cellular proteins along microtubules, the "highways" of the cell. The cellular proteins, or "cargo," are actually driven along the microtubules by "motors" in the cell. km3 helps to connect the right cargo to the motor so that the cargo can reach its appropriate destination.

In a previous study, Mulder and her team found that the process is initiated by the binding of a factor called "TGFâ" to receptors on the cell’s surface. This, in turn, sends a signal to km23 telling it to attach to the motor and pick up the cargo. When km23 is altered, the cargo doesn’t reach the correct destination in the cell. As a result, a traffic jam occurs, which causes chaos in the cell.

This latest study, titled "A TGFâ receptor-interacting protein frequently mutated in human ovarian cancer," was published in the Aug. 1 issue of Cancer Research,

The initiator of the journey, TGFâ, has been the focus of Mulder’s research program since 1988.

"TGFâ is a critical regulator of cell growth and is present throughout the body," she said. "It is already known to play an important role in suppressing the growth of epithelial cells, the type of cell that gives rise to solid tumors. When the appropriate signals are not sent by TGFâ, the growth of epithelial cells will not be controlled and a solid tumor can form. The alterations in km23 appear to disrupt some of the normal signals sent by TGFâ."

"The km23 alterations we have identified in human ovarian tumor tissues, described in our recent report, might also be used as prognostic indicators to help physicians decide on the most appropriate treatment for each patient," Mulder said.

Sean Young | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>