Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests protein may be early warning for ovarian cancer

12.08.2005


Penn State College of Medicine researchers have found a signal that could lead to earlier detection and treatment of ovarian cancer.



The Penn State team of scientists led by principal investigator Kathleen M. Mulder, Ph.D., professor of pharmacology, and working in conjunction with a researcher from the Center for Cancer Research, National Cancer Institute in Bethesda, Md., studied "km23," a protein that helps to direct protein traffic in the cell. Mulder’s team has found that at least 42 percent of ovarian cancer patient tumor tissues have alterations in km23. No similar alterations in km23 were detectable in normal human tissues, suggesting that it may be both a diagnostic indicator for the development of ovarian cancer and a possible target for cancer therapies. "While only close to half of ovarian cancer patients may have defects in km23, our results are still highly significant because there is no clinically useful screening test available for detection of ovarian cancer," said Mulder.

Additional studies are under way to continue the analyses of km23 abnormalities in specimens from women with ovarian cancer, and to determine whether different km23 alterations exist in other solid tumors, such as breast and colon cancer. "The next step is to develop a screening test for early detection of the km23 alterations in the blood of ovarian cancer patients," Mulder said. In addition, studies are under way to develop drugs that would target km23 and override the defects caused by the km23 alterations in the cancer cells. "The plan is to be able to use the screening test to identify those patients who would benefit from the anti-cancer drugs we will be developing using km23 as the target," Mulder said. "In the pharmaceutical industry, this is often referred to as ’personalized medicine,’ meaning that each patient can be checked for alterations in specific genes and their treatment targeted for the alterations specific to their cancer."


Epithelial ovarian cancer is often diagnosed at an advanced stage and accounts for more than 164,000 deaths annually. Despite advances in surgical techniques and chemotherapy, overall survival rates for women with ovarian cancer have not improved significantly because of late detection, often after the disease has already spread to remote organs. The identification of a potential early warning signal and a possible therapeutic target for the disease could lead to improved survival rates.

km23 is responsible, in part, for the movement of cellular proteins along microtubules, the "highways" of the cell. The cellular proteins, or "cargo," are actually driven along the microtubules by "motors" in the cell. km3 helps to connect the right cargo to the motor so that the cargo can reach its appropriate destination.

In a previous study, Mulder and her team found that the process is initiated by the binding of a factor called "TGFâ" to receptors on the cell’s surface. This, in turn, sends a signal to km23 telling it to attach to the motor and pick up the cargo. When km23 is altered, the cargo doesn’t reach the correct destination in the cell. As a result, a traffic jam occurs, which causes chaos in the cell.

This latest study, titled "A TGFâ receptor-interacting protein frequently mutated in human ovarian cancer," was published in the Aug. 1 issue of Cancer Research, http://cancerres.aacrjournals.org/.

The initiator of the journey, TGFâ, has been the focus of Mulder’s research program since 1988.

"TGFâ is a critical regulator of cell growth and is present throughout the body," she said. "It is already known to play an important role in suppressing the growth of epithelial cells, the type of cell that gives rise to solid tumors. When the appropriate signals are not sent by TGFâ, the growth of epithelial cells will not be controlled and a solid tumor can form. The alterations in km23 appear to disrupt some of the normal signals sent by TGFâ."

"The km23 alterations we have identified in human ovarian tumor tissues, described in our recent report, might also be used as prognostic indicators to help physicians decide on the most appropriate treatment for each patient," Mulder said.

Sean Young | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>