Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests protein may be early warning for ovarian cancer

12.08.2005


Penn State College of Medicine researchers have found a signal that could lead to earlier detection and treatment of ovarian cancer.



The Penn State team of scientists led by principal investigator Kathleen M. Mulder, Ph.D., professor of pharmacology, and working in conjunction with a researcher from the Center for Cancer Research, National Cancer Institute in Bethesda, Md., studied "km23," a protein that helps to direct protein traffic in the cell. Mulder’s team has found that at least 42 percent of ovarian cancer patient tumor tissues have alterations in km23. No similar alterations in km23 were detectable in normal human tissues, suggesting that it may be both a diagnostic indicator for the development of ovarian cancer and a possible target for cancer therapies. "While only close to half of ovarian cancer patients may have defects in km23, our results are still highly significant because there is no clinically useful screening test available for detection of ovarian cancer," said Mulder.

Additional studies are under way to continue the analyses of km23 abnormalities in specimens from women with ovarian cancer, and to determine whether different km23 alterations exist in other solid tumors, such as breast and colon cancer. "The next step is to develop a screening test for early detection of the km23 alterations in the blood of ovarian cancer patients," Mulder said. In addition, studies are under way to develop drugs that would target km23 and override the defects caused by the km23 alterations in the cancer cells. "The plan is to be able to use the screening test to identify those patients who would benefit from the anti-cancer drugs we will be developing using km23 as the target," Mulder said. "In the pharmaceutical industry, this is often referred to as ’personalized medicine,’ meaning that each patient can be checked for alterations in specific genes and their treatment targeted for the alterations specific to their cancer."


Epithelial ovarian cancer is often diagnosed at an advanced stage and accounts for more than 164,000 deaths annually. Despite advances in surgical techniques and chemotherapy, overall survival rates for women with ovarian cancer have not improved significantly because of late detection, often after the disease has already spread to remote organs. The identification of a potential early warning signal and a possible therapeutic target for the disease could lead to improved survival rates.

km23 is responsible, in part, for the movement of cellular proteins along microtubules, the "highways" of the cell. The cellular proteins, or "cargo," are actually driven along the microtubules by "motors" in the cell. km3 helps to connect the right cargo to the motor so that the cargo can reach its appropriate destination.

In a previous study, Mulder and her team found that the process is initiated by the binding of a factor called "TGFâ" to receptors on the cell’s surface. This, in turn, sends a signal to km23 telling it to attach to the motor and pick up the cargo. When km23 is altered, the cargo doesn’t reach the correct destination in the cell. As a result, a traffic jam occurs, which causes chaos in the cell.

This latest study, titled "A TGFâ receptor-interacting protein frequently mutated in human ovarian cancer," was published in the Aug. 1 issue of Cancer Research, http://cancerres.aacrjournals.org/.

The initiator of the journey, TGFâ, has been the focus of Mulder’s research program since 1988.

"TGFâ is a critical regulator of cell growth and is present throughout the body," she said. "It is already known to play an important role in suppressing the growth of epithelial cells, the type of cell that gives rise to solid tumors. When the appropriate signals are not sent by TGFâ, the growth of epithelial cells will not be controlled and a solid tumor can form. The alterations in km23 appear to disrupt some of the normal signals sent by TGFâ."

"The km23 alterations we have identified in human ovarian tumor tissues, described in our recent report, might also be used as prognostic indicators to help physicians decide on the most appropriate treatment for each patient," Mulder said.

Sean Young | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>