Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study yields insights into pathogenic fungi—and beer

08.08.2005


Chemotherapy and organ transplantation not only take a huge toll on patients, but they can compromise the immune system and leave patients vulnerable to infections from microbes such as pathogenic fungi--the fastest-growing cause of hospital-acquired infections. Now researchers from Whitehead Institute for Biomedical Research have discovered one possible reason why these fungal microbes are such a scourge.



According to the research appearing in the August 7 online edition of the journal Nature Genetics, fungal microbes can quickly alter the appearance of their cell surfaces, their "skin," disguising themselves in order to slip past the immune system’s vigilant defenses. And, for all the world’s brewers, the study also helps explain why certain beers are cloudy and others are clear.

"It’s all about skin," says Whitehead Member Gerald Fink, who compares the fungal microbe to an M&M--a sugar coating encasing the cell’s DNA. "The skin of fungi microbes is what enables them to stick to your organs, and thus become pathogenic. It also enables the fungi to stick together, which is desirable for fermentation in beer."


The genetic core to this study is a DNA phenomenon known as tandem repeats. Here, small units of between 3 and 200 nucleotides form within a gene and repeat sometimes up to about 35 times. (Nucleotides, the building blocks of our genome, are represented by the letters A, C, T, G.) In humans, these tandem repeats received a lot of attention when the gene responsible for Huntington’s disease was discovered; a repeat of the letters CAG in a gene called IT-15 causes the condition.

These tandem repeats also occur in fungal microbes. Kevin Verstrepen, a post-doctoral researcher in Fink’s lab, decided to find out how often they occur, and what possible functions they might offer, by using baker’s yeast as a model. Verstrepen scanned the entire yeast genome with a custom computer program developed by Whitehead’s bioinformatics group. He discovered that these repeats are common throughout the yeast genome, and that more than 60 percent occur in genes that code for cell-surface, or skin, proteins. In other words, "most of these repeats somehow affect how the yeast cell interacts with the environment surrounding it," says Verstrepen.

In addition, he found that the length of these repeats varied greatly between a mother and a daughter cell. While one yeast cell might have a 20-unit repeat on a particular gene, when it divides, the new cell might have only a five-unit repeat on that same gene. And subsequently, when that cell then divides, its daughter cell might go back to 20 repeats. "It’s like an accordion," says Verstrepen. "Our study really showed how quickly and easily these repeats can recombine, altering the properties of the cell surface almost immediately."

This provides a significant clue into why fungal infections can often be so deadly. The immune system generally recognizes invaders by certain signatures on their outer coatings, such as protein conformations. However, if these fungal microbes can quickly change the shape of these proteins by changing the number of repeats in the corresponding gene, they can then manage to stay one step ahead of our body’s defenses.

"It’s important to remember," says Fink, "that these microbes have been around for billions of years. They haven’t come this far without learning how to fight off predators."

Verstrepen and his colleagues took this research a step further, focusing on a gene called FLO1, a cell-surface gene common to both baker’s yeast and pathogenic fungi. FLO1 creates the conditions that enable yeast cells to adhere to surfaces. It’s also the gene that allows pathogenic fungi to stick to host tissue. The researchers discovered a clear correlation between the number of repeats in FLO1 and the degree to which these cells could adhere to a surface. When FLO1 contained many repeats, it adhered vigorously to a plastic surface. As the number of repeats declined, so did its ability to adhere.

Fink believes that these findings show why traditional approaches to targeting drugs won’t work on fungal microbes. The features that drugs target may be exactly the ones that change so readily. "We need to target other aspects to the cell surface that don’t change," says Fink, suggesting that certain sugar molecules residing on the inside of the cell coating may be valuable targets.

The research also may help to reveal why certain strains of yeast brew better beers.

Both Verstrepen and Fink have consulted for a number of commercial brewers. "Brewers have been cultivating certain strains of yeast for hundreds of years," says Fink. "The secret of a good, fresh, clear beer--the kind that Americans tend to like--is that the yeast cells all stick together." When yeast cells don’t adhere, the beer tends to cloud up. "We now know that these tandem repeats are the molecular mechanism that yields good beer."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>