Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing a pandemic: Study suggests strategies for containing a flu outbreak

04.08.2005


Containment in a medium-sized Southeast Asian community may be possible, though challenging, if implemented early, researchers say



Though quick to caution about the many things that could go wrong, researchers say that it may be possible to contain a Southeast Asian outbreak of avian influenza in humans, buying precious time for the production of a vaccine.

Using a computer model to simulate an outbreak in a rural Southeast Asian population, the scientists have shown how a combination of strategies, including targeted administration of antivirals, quarantine and prevaccination -- even with a poorly effective vaccine -- could potentially contain an outbreak in Southeast Asia under many circumstances.


The study, by Ira Longini of Emory University and colleagues, will be published online by the journal Science, at the Science Express website, on Thursday, 4 August.

"Our findings indicate that we have reason to be somewhat hopeful. If -- or, more likely, when -- an outbreak occurs in humans, there is a chance of containing it and preventing a pandemic. However, it will require a serious effort, with major planning and coordination, and there is no guarantee of success," said coauthor Elizabeth Halloran of Emory University.

"Early intervention could at least slow the pandemic, helping to reduce morbidity until a well-matched vaccine could be produced," she said.

The danger of avian flu is that the virus could develop into a new strain that could be transmitted among humans. The virus might mutate, or it might jump over to a human already infected with the flu and then mix, or "reassort," with the human flu virus. Because humans would have little or no immune protection against this strain, it could potentially cause a massive pandemic.

"There were three influenza pandemics in the 20th century alone. The threat of another pandemic, related to avian influenza, is real and very serious. Fortunately, as the new study shows, for the first time in human history, we have a chance of stopping the spread of a new influenza strain at the source through good surveillance and aggressive use of public health measures," said Katrina Kelner, Deputy Editor, Life Sciences, at Science.

A rural Southeast Asian population is a likely place for the new strain to emerge, so Longini and his colleagues based their model on the Thai 2000 census and a previous study of the social networks in the Nang Rong District in rural Thailand.

With this information, they simulated a population of 500,000 in which individuals mixed in a variety of settings, including households, household clusters, preschool groups, schools, workplaces, and a hospital. Social settings for casual contacts, such as might take place in markets, shops, and temples, were also included.

Using the model, the researchers analyzed how the disease, starting with a single case, would spread through the population in a variety of different scenarios.

They found that targeted use of antiviral drugs could be effective for containment as long as the intervention occurred within 21 days and the virus’ reproductive number (which represents the average number of people within a population someone with the disease is able to infect) had a relatively moderate value of roughly 1.6.

A process of administering antiviral drugs to the people in the same mixing groups as the infected person, called TAP for "targeted antiviral prophylaxis," could contain the outbreak as long as it reached 80 percent of the people targeted. A related strategy, GTAP, for "geographically targeted antiviral prophylaxis," which targets people within a certain geographic range of the initial case, produced similar results as long as it achieved coverage of 90 percent.

Vaccination before the outbreak, even with a vaccine that is poorly matched to the actual virus strain, increased the effectiveness of TAP and GTAP.

For even higher viral reproductive numbers, household quarantines would also be necessary to contain the virus. A combination of TAP, prevaccination and quarantine could contain strains with a reproductive number around 2.4. A value of 2.4 is relatively contagious, though some other viruses such as measles are substantially higher. In all cases, early intervention would be essential.

The authors note in their study that the current World Health Organization stockpile of antivirals for avian flu could probably be sufficient to help contain a pandemic in a population like the one in the model, if the stockpile were deployed within two to three weeks of detection.

As part of their study, the researchers consulted with Thai ministry of health officials and concluded that public health workers may decide that TAP, rather than GTAP, is the more realistic strategy, given their resources.

This research effort is part of a network called MIDAS (Models for Infectious Disease Agents Study), supported by the National Institute of General Medical Sciences. A related paper from another group of MIDAS researchers is being published simultaneously in the journal Nature.

Ginger Pinholster | EurekAlert!
Further information:
http://www.aaas.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>