Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing a pandemic: Study suggests strategies for containing a flu outbreak

04.08.2005


Containment in a medium-sized Southeast Asian community may be possible, though challenging, if implemented early, researchers say



Though quick to caution about the many things that could go wrong, researchers say that it may be possible to contain a Southeast Asian outbreak of avian influenza in humans, buying precious time for the production of a vaccine.

Using a computer model to simulate an outbreak in a rural Southeast Asian population, the scientists have shown how a combination of strategies, including targeted administration of antivirals, quarantine and prevaccination -- even with a poorly effective vaccine -- could potentially contain an outbreak in Southeast Asia under many circumstances.


The study, by Ira Longini of Emory University and colleagues, will be published online by the journal Science, at the Science Express website, on Thursday, 4 August.

"Our findings indicate that we have reason to be somewhat hopeful. If -- or, more likely, when -- an outbreak occurs in humans, there is a chance of containing it and preventing a pandemic. However, it will require a serious effort, with major planning and coordination, and there is no guarantee of success," said coauthor Elizabeth Halloran of Emory University.

"Early intervention could at least slow the pandemic, helping to reduce morbidity until a well-matched vaccine could be produced," she said.

The danger of avian flu is that the virus could develop into a new strain that could be transmitted among humans. The virus might mutate, or it might jump over to a human already infected with the flu and then mix, or "reassort," with the human flu virus. Because humans would have little or no immune protection against this strain, it could potentially cause a massive pandemic.

"There were three influenza pandemics in the 20th century alone. The threat of another pandemic, related to avian influenza, is real and very serious. Fortunately, as the new study shows, for the first time in human history, we have a chance of stopping the spread of a new influenza strain at the source through good surveillance and aggressive use of public health measures," said Katrina Kelner, Deputy Editor, Life Sciences, at Science.

A rural Southeast Asian population is a likely place for the new strain to emerge, so Longini and his colleagues based their model on the Thai 2000 census and a previous study of the social networks in the Nang Rong District in rural Thailand.

With this information, they simulated a population of 500,000 in which individuals mixed in a variety of settings, including households, household clusters, preschool groups, schools, workplaces, and a hospital. Social settings for casual contacts, such as might take place in markets, shops, and temples, were also included.

Using the model, the researchers analyzed how the disease, starting with a single case, would spread through the population in a variety of different scenarios.

They found that targeted use of antiviral drugs could be effective for containment as long as the intervention occurred within 21 days and the virus’ reproductive number (which represents the average number of people within a population someone with the disease is able to infect) had a relatively moderate value of roughly 1.6.

A process of administering antiviral drugs to the people in the same mixing groups as the infected person, called TAP for "targeted antiviral prophylaxis," could contain the outbreak as long as it reached 80 percent of the people targeted. A related strategy, GTAP, for "geographically targeted antiviral prophylaxis," which targets people within a certain geographic range of the initial case, produced similar results as long as it achieved coverage of 90 percent.

Vaccination before the outbreak, even with a vaccine that is poorly matched to the actual virus strain, increased the effectiveness of TAP and GTAP.

For even higher viral reproductive numbers, household quarantines would also be necessary to contain the virus. A combination of TAP, prevaccination and quarantine could contain strains with a reproductive number around 2.4. A value of 2.4 is relatively contagious, though some other viruses such as measles are substantially higher. In all cases, early intervention would be essential.

The authors note in their study that the current World Health Organization stockpile of antivirals for avian flu could probably be sufficient to help contain a pandemic in a population like the one in the model, if the stockpile were deployed within two to three weeks of detection.

As part of their study, the researchers consulted with Thai ministry of health officials and concluded that public health workers may decide that TAP, rather than GTAP, is the more realistic strategy, given their resources.

This research effort is part of a network called MIDAS (Models for Infectious Disease Agents Study), supported by the National Institute of General Medical Sciences. A related paper from another group of MIDAS researchers is being published simultaneously in the journal Nature.

Ginger Pinholster | EurekAlert!
Further information:
http://www.aaas.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>