Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing a pandemic: Study suggests strategies for containing a flu outbreak

04.08.2005


Containment in a medium-sized Southeast Asian community may be possible, though challenging, if implemented early, researchers say



Though quick to caution about the many things that could go wrong, researchers say that it may be possible to contain a Southeast Asian outbreak of avian influenza in humans, buying precious time for the production of a vaccine.

Using a computer model to simulate an outbreak in a rural Southeast Asian population, the scientists have shown how a combination of strategies, including targeted administration of antivirals, quarantine and prevaccination -- even with a poorly effective vaccine -- could potentially contain an outbreak in Southeast Asia under many circumstances.


The study, by Ira Longini of Emory University and colleagues, will be published online by the journal Science, at the Science Express website, on Thursday, 4 August.

"Our findings indicate that we have reason to be somewhat hopeful. If -- or, more likely, when -- an outbreak occurs in humans, there is a chance of containing it and preventing a pandemic. However, it will require a serious effort, with major planning and coordination, and there is no guarantee of success," said coauthor Elizabeth Halloran of Emory University.

"Early intervention could at least slow the pandemic, helping to reduce morbidity until a well-matched vaccine could be produced," she said.

The danger of avian flu is that the virus could develop into a new strain that could be transmitted among humans. The virus might mutate, or it might jump over to a human already infected with the flu and then mix, or "reassort," with the human flu virus. Because humans would have little or no immune protection against this strain, it could potentially cause a massive pandemic.

"There were three influenza pandemics in the 20th century alone. The threat of another pandemic, related to avian influenza, is real and very serious. Fortunately, as the new study shows, for the first time in human history, we have a chance of stopping the spread of a new influenza strain at the source through good surveillance and aggressive use of public health measures," said Katrina Kelner, Deputy Editor, Life Sciences, at Science.

A rural Southeast Asian population is a likely place for the new strain to emerge, so Longini and his colleagues based their model on the Thai 2000 census and a previous study of the social networks in the Nang Rong District in rural Thailand.

With this information, they simulated a population of 500,000 in which individuals mixed in a variety of settings, including households, household clusters, preschool groups, schools, workplaces, and a hospital. Social settings for casual contacts, such as might take place in markets, shops, and temples, were also included.

Using the model, the researchers analyzed how the disease, starting with a single case, would spread through the population in a variety of different scenarios.

They found that targeted use of antiviral drugs could be effective for containment as long as the intervention occurred within 21 days and the virus’ reproductive number (which represents the average number of people within a population someone with the disease is able to infect) had a relatively moderate value of roughly 1.6.

A process of administering antiviral drugs to the people in the same mixing groups as the infected person, called TAP for "targeted antiviral prophylaxis," could contain the outbreak as long as it reached 80 percent of the people targeted. A related strategy, GTAP, for "geographically targeted antiviral prophylaxis," which targets people within a certain geographic range of the initial case, produced similar results as long as it achieved coverage of 90 percent.

Vaccination before the outbreak, even with a vaccine that is poorly matched to the actual virus strain, increased the effectiveness of TAP and GTAP.

For even higher viral reproductive numbers, household quarantines would also be necessary to contain the virus. A combination of TAP, prevaccination and quarantine could contain strains with a reproductive number around 2.4. A value of 2.4 is relatively contagious, though some other viruses such as measles are substantially higher. In all cases, early intervention would be essential.

The authors note in their study that the current World Health Organization stockpile of antivirals for avian flu could probably be sufficient to help contain a pandemic in a population like the one in the model, if the stockpile were deployed within two to three weeks of detection.

As part of their study, the researchers consulted with Thai ministry of health officials and concluded that public health workers may decide that TAP, rather than GTAP, is the more realistic strategy, given their resources.

This research effort is part of a network called MIDAS (Models for Infectious Disease Agents Study), supported by the National Institute of General Medical Sciences. A related paper from another group of MIDAS researchers is being published simultaneously in the journal Nature.

Ginger Pinholster | EurekAlert!
Further information:
http://www.aaas.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>