Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest study of unrelated bone marrow transplantation for leukemia serves as benchmark

03.08.2005


Multi-institutional study addresses critical GVHD complication



Together with 16 other institutions in the United States, University of Minnesota researchers led the largest study to date in patients with leukemia and related disorders undergoing bone marrow transplantation from unrelated donors. The study was designed to determine whether one of two general approaches to prevent graft-versus-host-disease (GVHD), a potentially lethal complication, might result in improved survival.

While the trial demonstrated similar survival rates, the study was the most comprehensive to date, evaluating various clinical outcomes, resource utilization, costs, and health quality of life. The study, published in the Aug. 3, 2005 online issue of The Lancet, will likely serve as the benchmark for all future studies in this patient population.


Graft-versus-host-disease is a common complication after bone marrow transplantation in which the immune cells from the donated marrow attack the body of the patient who received the transplant. Severity ranges from mild to life threatening, and the disease and its treatment can have a profound effect on quality of life.

The two primary strategies for preventing GVHD, the removal of T-cells (the cell that causes GVHD) and immunosuppressive drug therapy (suppression of T-cell function), were studied in this trial. While the primary aim of the study was to demonstrate whether one approach might be better than the other in terms of disease-free survival three years after transplantation, the study also systematically compared the incidence of various complications (GVHD, graft failure, therapy-related side effects, disease recurrence) as well as utilization of blood products, nutritional supplementation, number of admissions to the hospital and intensive care unit, hospital costs, and health quality of life.

"While the T-cell depletion approach was very effective in reducing the risk of GVHD, a higher risk of viral infection in general and higher risk of disease recurrence specifically in patients with chronic myelogenous leukemia, eliminated the potential benefit of reduced GVHD," ," said John E. Wagner, M.D., professor of pediatrics and scientific director of clinical research, Blood and Marrow Transplantation Program and Stem Cell Institute, and lead author of the study. "Overall, we observed no differences in survival at three years and no appreciable differences in cost or quality of life."

These results counter what investigators might have guessed and reflect the critical importance of performing large randomized trials. "Prior to this study, colleagues promoting T-cell depletion, like myself, predicted that T-cell depletion would have offered a better chance of survival," Wagner said. "What is abundantly clear is that T-cell depletion and GVHD prevention is only one step in figuring out how to improve upon the chance of cure in unrelated marrow transplant patients. The next hurdle is to find ways to fix the crippled immune system."

Despite the lack of evidence that one approach was better than the other, "the results clearly point out the limitations of bone marrow transplants," Wagner said. However, he added that the methodological approaches used and study results will be valuable benchmarks for future studies of novel treatments for leukemias and other blood-related cancers.

Sara E. Buss | EurekAlert!
Further information:
http://www.umn.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>