Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats’ response to ’stop snacking’ signal diminished by high fat diet

03.08.2005


Rats fed a high fat diet were less sensitive to a hormonal ’stop eating’ signal than rats on a low fat diet when they were given access to a high calorie, high fat snack that the animals find yummy.



Dr. Mihai Covasa, assistant professor of nutritional sciences and a member of the Penn State Neuroscience Institute, led the study. He says, "When we gave the rats doses of a ’stop eating’ hormone, the rats on the low fat diet significantly suppressed their intake of the snack but not the rats on the high fat diet."

Covasa adds, "These results suggest that a long-term, high-fat diet may actually promote short-term overconsumption of highly palatable foods high in dietary fat by reducing sensitivity to at least one important feedback signal which would ordinarily limit eating."


The results are detailed in the current (August) issue of the Journal of Nutrition in a paper, Adaptation to a High-Fat Diet Leads to Hyperphagia and Diminished Sensitivity to Cholecystokinin in Rats. The authors are David M. Savastano, who recently earned his master’s degree under Covasa’s direction, and Covasa.

The ’stop eating’ hormone used in the study was cholecystokinin or CCK. CCK is released by cells in the small intestine when fat or protein is present. The hormone’s release activates nerves that connect the intestine with the brain where the decision to stop eating is made.

Previous studies with human subjects showed that those on a high fat diet have more CCK in their bloodstream but are less responsive to it. They typically report feeling increased hunger and declining fullness and eat more.

No human study of snacking and CCK has been reported. This study, with rats, is the first to link diminished sensitivity to CCK following exposure to a high fat diet and overconsumption of a high calorie, high fat snack.

In the current study, the rats were only given access to the high calorie, high fat snack for three hours a day. The rest of the time they received either low fat or high fat rat chow. The high and low fat chows were regulated so that they were equivalent in calories and both groups of rats gained weight at the same rate.

Even though the rats on the high fat diet ate, on average 40 percent more of the high calorie, high fat snack than the rats on the low fat diet, they didn’t gain extra weight. Rats, unlike humans, cut back on their usual chow when they snack.

Covasa says, "Rats are notorious in compensating for food to maintain a constant body weight. Although adaptation to the high fat diet led to overconsumption of the high calorie, high fat snack, there was no difference in weight gain between the two groups of rats during the 20 days of testing because the rats compensated by eating less of their maintenance diet."

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>