Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats’ response to ’stop snacking’ signal diminished by high fat diet

03.08.2005


Rats fed a high fat diet were less sensitive to a hormonal ’stop eating’ signal than rats on a low fat diet when they were given access to a high calorie, high fat snack that the animals find yummy.



Dr. Mihai Covasa, assistant professor of nutritional sciences and a member of the Penn State Neuroscience Institute, led the study. He says, "When we gave the rats doses of a ’stop eating’ hormone, the rats on the low fat diet significantly suppressed their intake of the snack but not the rats on the high fat diet."

Covasa adds, "These results suggest that a long-term, high-fat diet may actually promote short-term overconsumption of highly palatable foods high in dietary fat by reducing sensitivity to at least one important feedback signal which would ordinarily limit eating."


The results are detailed in the current (August) issue of the Journal of Nutrition in a paper, Adaptation to a High-Fat Diet Leads to Hyperphagia and Diminished Sensitivity to Cholecystokinin in Rats. The authors are David M. Savastano, who recently earned his master’s degree under Covasa’s direction, and Covasa.

The ’stop eating’ hormone used in the study was cholecystokinin or CCK. CCK is released by cells in the small intestine when fat or protein is present. The hormone’s release activates nerves that connect the intestine with the brain where the decision to stop eating is made.

Previous studies with human subjects showed that those on a high fat diet have more CCK in their bloodstream but are less responsive to it. They typically report feeling increased hunger and declining fullness and eat more.

No human study of snacking and CCK has been reported. This study, with rats, is the first to link diminished sensitivity to CCK following exposure to a high fat diet and overconsumption of a high calorie, high fat snack.

In the current study, the rats were only given access to the high calorie, high fat snack for three hours a day. The rest of the time they received either low fat or high fat rat chow. The high and low fat chows were regulated so that they were equivalent in calories and both groups of rats gained weight at the same rate.

Even though the rats on the high fat diet ate, on average 40 percent more of the high calorie, high fat snack than the rats on the low fat diet, they didn’t gain extra weight. Rats, unlike humans, cut back on their usual chow when they snack.

Covasa says, "Rats are notorious in compensating for food to maintain a constant body weight. Although adaptation to the high fat diet led to overconsumption of the high calorie, high fat snack, there was no difference in weight gain between the two groups of rats during the 20 days of testing because the rats compensated by eating less of their maintenance diet."

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>