Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beach pollution is worst during new and full moon

02.08.2005


A new study of 60 beaches in Southern California suggests that water pollution varies with the lunar cycle, reaching the highest levels when tides are ebbing during the new and full moon. The findings could help beachgoers and managers better assess the potential risk of swimming.



The report appears in the Aug. 1 issue of the American Chemical Society’s journal Environmental Science & Technology. ACS is the world’s largest scientific society.

Coastal water quality is controlled by a number of complex physical and biological factors, including tidal cycles and seasonal rainfall. This complexity makes beach water monitoring difficult, with levels of bacteria in a certain area changing in just a few minutes.


For the new study, the researchers examined monitoring data compiled for beaches throughout Southern California, keeping track of tidal patterns and analyzing them for concentrations of enterococci -- bacteria that allow scientists to estimate the risk of illness from swimming in marine waters. "This is the largest array of beaches examined at the same time for a similar pattern," says Alexandria Boehm, Ph.D., an environmental engineer at Stanford University and lead author of the study.

She and her colleagues at the Southern California Coastal Water Research Project found that in the full and new phases of the moon, levels of enterococci were higher at the vast majority of the beaches studied. Boehm found that during so-called "spring tides," when water levels vary the most between high and low tides, a beach is twice as likely to be out of compliance with water quality standards. Spring tides are exceptionally high or low tides that take place during the full and new moons, but have nothing to do with the season of the year.

The results are of immediate practical use to swimmers and beach managers alike, according to Boehm. "The general public can use the phase of the moon and the tide stage to assess the relative risk of illness," she says. "It is riskier to swim during spring-ebb tides [receding tide] compared to all other tidal conditions."

Beach managers can now use tides as they currently use rainfall to assess warnings, Boehm suggests. When it rains, managers recommend that swimmers not enter the water for three days. "They could also suggest that during spring tides -- and especially spring-ebb tides -- water quality is more likely to be impaired, and those who are risk-averse should avoid swimming," Boehm says.

The results might also help managers identify potential sources of pollution at beaches. "Most sources of enterococci at beaches are unknown," Boehm says. "Because we found tidal signals in enterococci densities at beaches with no obvious point source, like storm drains and creeks, this suggests that there is a widespread tidally forced source of enterococci at beaches."

Boehm suggests several candidates for this "mystery" source, including beach sands, decaying plant material and polluted groundwater. "Beach sands and wrack [piles of seaweed and animal remains that wash ashore] have been shown at freshwater beaches to harbor fecal indicator bacteria and even pathogenic bacteria," Boehm says. "Beach managers who want to improve water quality at their beaches should investigate the potential of these sources to be contributors of enterococci to marine waters."

Boehm cautions that enterococci from beach sands and wrack may not correlate with health risk the same way as enterococci from runoff or sewage. "We just don’t know for sure, since no one has done an epidemiological study to connect human illness to enterococci from non-point sources other than runoff," Boehm says. "We need to do additional work to understand the source of enterococci at all these beaches."

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>