Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research may provide new link between soft drinks and weight gain

01.08.2005


A University of Cincinnati (UC) study provides new evidence that drinking large amounts of beverages containing fructose adds body fat, and might explain why sweetening with fructose could be even worse than using other sweeteners.

Researchers allowed mice to freely consume either water, fructose sweetened water or soft drinks. They found increased body fat in the mice that drank the fructose-sweetened water and soft drinks--despite that fact that these animals decreased the amount of calories they consumed from solid food.

This, said author Matthias Tschöp, MD, associate professor in UC’s psychiatry department and a member of the Obesity Research Center at UC’s Genome Research Institute, suggests that the total amount of calories consumed when fructose is added to diets may not be the only explanation for weight gain. Instead, he said, consuming fructose appears to affect metabolic rate in a way that favors fat storage. "Our study shows how fat mass increases as a direct consequence of soft drink consumption," said Dr. Tschöp.



The research appears in the July 2005 issue of Obesity Research, the official journal of the North American Association for the Study of Obesity (NAASO).

Consumption of sweetened foods and beverages containing sucrose and high-fructose corn syrup?particularly carbonated soft drinks and some juices and cereals--has been thought to be a leading cause of obesity. A widely used sweetener derived from corn, high-fructose corn syrup is similar to sucrose (table sugar) in its composition, about half glucose and half fructose.

Dr. Tschöp’s lab used novel body composition analyzers that use magnetic resonance technology to carefully monitor body fat in mice.

All the mice began the study at an average weight of 39 grams. Those consuming the fructose-sweetened water showed significant weight gain over the course of the study, with an average final weight of 48 grams--compared with averages below 44 grams for the other groups--and had about 90 percent more body fat than the mice that consumed water only.

Total caloric intake was lower in the mice that consumed the fructose-sweetened water than in the other groups, except for the control animals provided with water only. "We were surprised to see that mice actually ate less when exposed to fructose-sweetened beverages, and therefore didn’t consume more overall calories," said Dr. Tschöp. "Nevertheless, they gained significantly more body fat within a few weeks."

Results from an earlier study in humans led by Peter Havel, DVM, PhD, an endocrinology researcher at the University of California, Davis, and coauthored by Dr. Tschöp, found that several hormones involved in the regulation of body weight, including leptin, insulin and ghrelin, do not respond to fructose as they do to other types of carbohydrates, such as glucose.

Based on that study and their new data, the researchers now also believe that another factor contributing to the increased fat storage is that the liver metabolizes fructose differently than it does other carbohydrates. "Similar to dietary fat, fructose doesn’t appear to fully trigger the hormonal systems involved in the long-term control of food intake and energy metabolism," said coauthor Dr. Havel.

The researchers say that further studies in humans are needed to determine if high-fructose corn syrup in soft drinks is directly responsible for the current increase in human obesity.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>