Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research may provide new link between soft drinks and weight gain

01.08.2005


A University of Cincinnati (UC) study provides new evidence that drinking large amounts of beverages containing fructose adds body fat, and might explain why sweetening with fructose could be even worse than using other sweeteners.

Researchers allowed mice to freely consume either water, fructose sweetened water or soft drinks. They found increased body fat in the mice that drank the fructose-sweetened water and soft drinks--despite that fact that these animals decreased the amount of calories they consumed from solid food.

This, said author Matthias Tschöp, MD, associate professor in UC’s psychiatry department and a member of the Obesity Research Center at UC’s Genome Research Institute, suggests that the total amount of calories consumed when fructose is added to diets may not be the only explanation for weight gain. Instead, he said, consuming fructose appears to affect metabolic rate in a way that favors fat storage. "Our study shows how fat mass increases as a direct consequence of soft drink consumption," said Dr. Tschöp.



The research appears in the July 2005 issue of Obesity Research, the official journal of the North American Association for the Study of Obesity (NAASO).

Consumption of sweetened foods and beverages containing sucrose and high-fructose corn syrup?particularly carbonated soft drinks and some juices and cereals--has been thought to be a leading cause of obesity. A widely used sweetener derived from corn, high-fructose corn syrup is similar to sucrose (table sugar) in its composition, about half glucose and half fructose.

Dr. Tschöp’s lab used novel body composition analyzers that use magnetic resonance technology to carefully monitor body fat in mice.

All the mice began the study at an average weight of 39 grams. Those consuming the fructose-sweetened water showed significant weight gain over the course of the study, with an average final weight of 48 grams--compared with averages below 44 grams for the other groups--and had about 90 percent more body fat than the mice that consumed water only.

Total caloric intake was lower in the mice that consumed the fructose-sweetened water than in the other groups, except for the control animals provided with water only. "We were surprised to see that mice actually ate less when exposed to fructose-sweetened beverages, and therefore didn’t consume more overall calories," said Dr. Tschöp. "Nevertheless, they gained significantly more body fat within a few weeks."

Results from an earlier study in humans led by Peter Havel, DVM, PhD, an endocrinology researcher at the University of California, Davis, and coauthored by Dr. Tschöp, found that several hormones involved in the regulation of body weight, including leptin, insulin and ghrelin, do not respond to fructose as they do to other types of carbohydrates, such as glucose.

Based on that study and their new data, the researchers now also believe that another factor contributing to the increased fat storage is that the liver metabolizes fructose differently than it does other carbohydrates. "Similar to dietary fat, fructose doesn’t appear to fully trigger the hormonal systems involved in the long-term control of food intake and energy metabolism," said coauthor Dr. Havel.

The researchers say that further studies in humans are needed to determine if high-fructose corn syrup in soft drinks is directly responsible for the current increase in human obesity.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>