Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research may provide new link between soft drinks and weight gain

01.08.2005


A University of Cincinnati (UC) study provides new evidence that drinking large amounts of beverages containing fructose adds body fat, and might explain why sweetening with fructose could be even worse than using other sweeteners.

Researchers allowed mice to freely consume either water, fructose sweetened water or soft drinks. They found increased body fat in the mice that drank the fructose-sweetened water and soft drinks--despite that fact that these animals decreased the amount of calories they consumed from solid food.

This, said author Matthias Tschöp, MD, associate professor in UC’s psychiatry department and a member of the Obesity Research Center at UC’s Genome Research Institute, suggests that the total amount of calories consumed when fructose is added to diets may not be the only explanation for weight gain. Instead, he said, consuming fructose appears to affect metabolic rate in a way that favors fat storage. "Our study shows how fat mass increases as a direct consequence of soft drink consumption," said Dr. Tschöp.



The research appears in the July 2005 issue of Obesity Research, the official journal of the North American Association for the Study of Obesity (NAASO).

Consumption of sweetened foods and beverages containing sucrose and high-fructose corn syrup?particularly carbonated soft drinks and some juices and cereals--has been thought to be a leading cause of obesity. A widely used sweetener derived from corn, high-fructose corn syrup is similar to sucrose (table sugar) in its composition, about half glucose and half fructose.

Dr. Tschöp’s lab used novel body composition analyzers that use magnetic resonance technology to carefully monitor body fat in mice.

All the mice began the study at an average weight of 39 grams. Those consuming the fructose-sweetened water showed significant weight gain over the course of the study, with an average final weight of 48 grams--compared with averages below 44 grams for the other groups--and had about 90 percent more body fat than the mice that consumed water only.

Total caloric intake was lower in the mice that consumed the fructose-sweetened water than in the other groups, except for the control animals provided with water only. "We were surprised to see that mice actually ate less when exposed to fructose-sweetened beverages, and therefore didn’t consume more overall calories," said Dr. Tschöp. "Nevertheless, they gained significantly more body fat within a few weeks."

Results from an earlier study in humans led by Peter Havel, DVM, PhD, an endocrinology researcher at the University of California, Davis, and coauthored by Dr. Tschöp, found that several hormones involved in the regulation of body weight, including leptin, insulin and ghrelin, do not respond to fructose as they do to other types of carbohydrates, such as glucose.

Based on that study and their new data, the researchers now also believe that another factor contributing to the increased fat storage is that the liver metabolizes fructose differently than it does other carbohydrates. "Similar to dietary fat, fructose doesn’t appear to fully trigger the hormonal systems involved in the long-term control of food intake and energy metabolism," said coauthor Dr. Havel.

The researchers say that further studies in humans are needed to determine if high-fructose corn syrup in soft drinks is directly responsible for the current increase in human obesity.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>