Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Studies reveal how plague disables immune system, and how to exploit the process to make a vaccine


Two studies by researchers at the University of Chicago show how the bacteria that cause the plague manage to outsmart the immune system and how, by slightly altering one of the microbe’s tools, the researchers produced what may be the first safe and effective vaccine.

Both papers -- one published online July 28 in Science Express and one in the August issue of Infection and Immunity -- focus on aspects of the type-III pathway, a molecular syringe that Yersinia pestis, the bacterium that may have killed more people throughout history than any other infectious disease, uses to disable its host’s immune system.

"Yersinia pestis is the nastiest thing alive," said study author Olaf Schneewind, M.D., Ph.D., professor and chairman of microbiology at the University of Chicago and director of the Great Lakes Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Research (GLRCE). "It’s the most virulent bacterial organism known to mankind. But we now know a little more about how it exercises those powers and we think we can use that knowledge to prepare a preemptive strike."

Historically, the terms "plague" or "Black Death" have referred to the bubonic plague, caused by Yersinia pestis and spread by the bites of infected fleas, which acquire the germ from infected rodents. In the mid-14th century, the plague swept through Europe killing nearly one-third of the population. It returned with a slightly reduced death count about once a generation for centuries.

Although far less common now, the plague has not entirely gone away. There are fewer than 2,000 cases a year worldwide, including 10 to 20 each year in the western United States. One out of seven persons infected dies, even with aggressive treatment.

Since 2001, however, many people have worried that terrorists could exploit Y. pestis as a weapon, spreading it widely and rapidly as an aerosol rather than through fleabites and rodents. Contracted this way -- infecting the lungs rather than the bloodstream -- the disease is known as pneumonic plague. This form of the infection progresses faster, spreads easier from person to person, and is far more deadly, killing 100 percent of those who do not receive the right antibiotics soon after exposure. "There is," the authors note, "an urgent need for vaccine development."

One of this microbe’s enduring mysteries has been how it gains a foothold in the host without triggering a protective immune response. In the Science Express paper, Schneewind and colleagues show how Y. pestis annihilates the first line of defense in the host’s immune system before it can generate a full response.

The researchers infected mice with Y. pestis. Two to three days later they harvested cells from organs where the bacteria tend to cluster. They used a dye to stain those cells green.

When Y. pestis attacks a cell it uses the type-III pathway -- a needle-like projection -- to inject various toxins into the cell, killing it. The researchers endowed these bacteria with an additional enzyme, which the microbes also injected in cells. This enzyme can snip the green dye into two pieces. When that happens, those cells, when exposed to fluorescent light, glow blue instead of green.

This technique enabled the team to identify the cell types targeted by the bacteria. Two days after the mice were infected, their spleens were filled with bacteria. Although the overwhelming majority of immune cells in the spleen are B cells or T cells, nearly all of the infected cells were macrophages, neutrophils or dendritic cells.

These cells make up what immunologists call the "innate" immune system. They are the first to respond to a bacterial invasion. Their role is to rush to the infection site, engulf the bacteria, chew them up into smaller pieces and present those pieces to the T and B cells -- the "adaptive" immune system -- which enter the fray more slowly but bring powerful and very specific weapons targeted at those individual pieces.

"This is a very clever system for this particular kind of bacteria," said Schneewind. It can take eight to 10 days for the B and T cells to multiply and fully engage. "By that time, with plague," he said, "the host is dead."

The bacteria’s Achilles heel, however, may be a protein called LcrV, which Y. pestis transports through the needle and uses to inject its toxins. LcrV plays two roles. It helps the needle to penetrate the membrane surrounding the target cell. It also suppresses the immune response. LcrV causes affected cells to release 40 times the normal levels of interleukin 10 (IL-10), which dampens down the immune response. LcrV also prevents secretion of tumor necrosis factor (TNF), which causes inflammation.

"LcrV is secreted in massive amounts via the type-III pathway during an infection," Schneewind said. "Without it, the bacteria are relatively harmless."

Consequently, researchers have tried to use LcrV alone as a vaccine. Unfortunately, because it suppresses the immune system, immunization with this molecule may be harmful.

Schneewind and colleagues, however, tested 11 truncated versions of LcrV, snipping out, from different locales, 30 of the protein’s 326 amino acids in hopes of eliminating the elements that suppressed the immune response but retaining enough of the normal protein’s structure to generate protective antibodies.

Out of 11 altered versions they found one that met both criteria. In mouse and human macrophages, version rV10, missing amino acids 271 through 300, triggered only small amounts of IL-10 and had little effect on TNF secretion. Mice immunized twice over six weeks with rV10 developed antibodies that protected them from many times the lethal dose of the bacteria.

"Our data, the authors conclude, "provide the first evidence of plague vaccines that do not suppress innate immune responses … and that may be useful for plague vaccination in animals, and, perhaps, humans." The next steps include testing in other animal models, said Schneewind.

The two papers combined, Schneewind suggested, are a good example of how, in this era of heightened awareness, "we can use modern tools to learn new things about an ancient scourge, and to prepare for the possible re-emergence of diseases we would like to forget, but better not."

John Easton | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>