Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Well-known protein helps stem cells become secretory cells

28.07.2005


Johns Hopkins researchers have discovered that a single protein regulates secretion levels in the fruit fly’s salivary gland and its skin-like outer layer.



Described in the May 15 issue of Development, the finding improves understanding of how cells become specialized for secretion, which is a critical ability of certain glands and cell types in organisms from insects to humans.

The researchers discovered that a protein called CrebA single-handedly controls the entire set of events leading to secretion in the fruit fly’s salivary gland and epidermis, its skin-like outer layer.


CrebA, or a closely related human gene, might play the same role in certain human cells, too, the researchers say.

In juvenile (type I) diabetes, for example, pancreatic cells that normally produce and secrete insulin don’t work, and stem cells might be able to help fix that problem, the researchers note. “The key is knowing how pancreatic cells know what hormones to produce and release, or how any gland does, and the new findings add to that knowledge,” says Deborah Andrew, Ph.D., professor of cell biology in Johns Hopkins’ Institute for Basic Biomedical Sciences.

Curiosity brought Andrew and Elliott Abrams, then a graduate student, to focus on secretion in the salivary gland, the largest glandular organ in the fruit fly embryo, approximately six years ago. In humans and in fruit flies, the gland secretes saliva, a fluid containing water, mucus, electrolytes, and food-dissolving enzymes, into the mouth, and is important to the digestive system.

In their new experiments, the researchers looked at the expression of 34 secretory genes in a normal fruit fly embryo to see which genes were turned on when. All 34 genes were expressed at high levels in the early salivary gland, they found. According to Andrew, “This suggests the salivary gland becomes programmed for secretion because all the components required to allow secretion to occur are ‘turned on’ very early in development.”

In order for any gene’s instructions to be used to make a protein, the process of reading the instructions is jump-started by proteins called transcription factors. In the salivary gland, the researchers found two of these proteins that controlled secretory gene expression in the salivary gland: CrebA (Cyclic-AMP response element binding protein A) and Fkh (Fork head).

CrebA is required for the expression of the secretory genes throughout development, while Fkh appears to be required only in later embryonic stages. The group has shown that Fkh is required to maintain expression of CrebA in the salivary gland. “CrebA is the more immediate factor involved in keeping secretory genes expressed at high levels, and Fork head acts through it,” said Andrew.

CrebA’s role in the fruit fly’s epidermis gives it secretion-promoting powers there as well, the researchers note. In fruit flies, epidermal cells secrete the cuticle, a protective covering for the organism.

“Our findings suggest that this single transcription factor directly determines the amount of secretory activity in a given cell type,” said Andrew.

Funding for the study was provided by the National Institutes of Health.
Development 132, 2743-2758 (2005)

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>