Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new understanding of how immune system targets disease

27.07.2005


Study sets foundation for new generation of vaccines for HIV, influenza

Scientists have taken a major step toward the goal of altering viruses, bacteria and tumor cells so that they demand attention from immune cells designed to destroy them. According to research published today in the journal Immunity, researchers at the University of Rochester Medical Center have determined for the first time a single biochemical feature of disease-causing molecules (pathogens) that, if changed, would force them to provoke an attack by the human immune system.

Recognizing molecules as "self," versus foreign invaders to be destroyed, is a central responsibility of the immune system. Tumors closely resemble self or "host" tissues and can confuse the system. Viruses and bacteria are immediately recognizable as foreign, but have learned to change shape so often that the system loses track of them. Pathogens use the same tricks to escape the immunity provided by vaccines.



In an effort to deny diseases the ability to hide, researchers have for years been asking a key question: Why do our bodies select certain, small pieces (epitopes) of each disease-causing molecule to trigger an immune response, while ignoring the rest? Those few, triggering protein fragments are termed "immunodominant." Unfortunately, the immune system sometimes makes poor choices about which epitopes to pay attention to, and which to ignore. Understanding of how immunodominance is conferred would enable vaccine designers to shift the immune system spotlight to parts of pathogens that they cannot change in efforts to escape detection. For example, a vaccine could be designed to target a protein fragment central to a virus’s ability to reproduce, or to invade its prey.

"Our study identified for the first time the chemical mechanism that determines immunodominance, and proved that it can be fine-tuned," said Andrea Sant, Ph.D., a professor within the David H. Smith Center for Vaccine Biology and Immunology at the University of Rochester Medical Center, and the study’s lead author. "If confirmed, the findings could launch a new wing of research seeking to re-engineer viruses, bacteria and tumor cells to make them hundreds of times more likely to be noticed and destroyed by our immune system."

Study Details

As part of the immune response, T cells, one type of white blood cell, partner with dendritic cells to make careful decisions about which pieces of pathogens will trigger a full-scale immune attack. Dendritic cells roam the body, checking each particle they come across for a self or invader "label." Upon encountering an invader, a dendritic cell will "swallow it," cut it up, and carry the pieces to the nearest lymph node.

Once in the lymph node, major histocompatibility complex (Mhc) proteins inside the dendritic cell present immunodominant epitopes on the cell’s surface for consideration by T cells gathered there. Once activated by high enough levels of target epitope for long enough periods of time, T cells become armed and capable of destroying the pathogen in question.

Sant’s study provides the first proof that it is something about the invader epitope itself that drives and focuses T cell response, and not some action of enzymes inside the dendritic cell as once thought. The quality determining immunodominance is the strength and lifespan (kinetic stability) of the bond between the Mhc protein and a given epitope. Kinetic stability determines whether, in the face of competing reactions within the immune system, an epitope:Mhc complex can remain intact on the dendritic cell surface long enough to demand T cell attention. Sant’s team found that immunodominant peptides were likely to stay bound to Mhc molecules for an average of 150 hours, where nondominant epitopes held on for less than 10 hours.

"What’s exciting is that kinetic stability is determined by how tightly an epitope fits into the Mhc protein, and we can control that fit with standard techniques," Sant said. "By switching out single amino acid building blocks, we were able to drastically increase the potency of the T cell response to target epitopes. If confirmed, this discovery will bring immundominance and a major portion of the immune system under our control for the first time."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>