Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscientists identify how trauma triggers long-lasting memories in the brain

26.07.2005


Brain’s amygdala plays pivotal role during an emotional experience, strengthening connections between neurons



A research team led by UC Irvine neuroscientists has identified how the brain processes and stores emotional experiences as long-term memories. The research, performed on rats, could help neuroscientists better understand why emotionally arousing events are remembered over longer periods than emotionally neutral events, and may ultimately find application in treatments for conditions such as post-traumatic stress disorder.

The study shows that emotionally arousing events activate the brain’s amygdala, the almond-shaped portion of the brain involved in emotional learning and memory, which then increases a protein called "Arc" in the neurons in the hippocampus, a part of the brain involved in processing and enabling the storage of lasting memories. The researchers believe that Arc helps store these memories by strengthening the synapses, the connections between neurons.


The study will appear in today’s issue of the Proceedings of the National Academy of Sciences.

"Emotionally neutral events generally are not stored as long-term memories," said Christa McIntyre, the first author of the paper and a postdoctoral researcher in the Department of Neurobiology and Behavior in UCI’s School of Biological Sciences, working with James L. McGaugh, research professor and a fellow at the Center for the Neurobiology of Learning and Memory. "On the other hand, emotionally arousing events, such as those of September 11, tend to be well-remembered after a single experience because they activate the amygdala."

In their experiments, the researchers placed a group of rats in a well-lit compartment with access to an adjacent dark compartment. Because rats are nocturnal and prefer dark environments, they tended to enter the dark compartment. Upon doing so, however, they were each given a mild foot-shock – an emotional experience that, by itself, was not strong enough to become a long-lasting memory. Some of the rats then had their amygdala chemically stimulated in order to determine what role it played in forming a memory of the experience.

When they placed the rats that received both the mild foot-shock and the amygdala stimulation back in the well-lit compartment, the researchers found the rats tended to remain there, demonstrating a memory for the foot shock they had received in the dark compartment. These rats, the researchers found, also showed an increase in the amount of the Arc protein in the hippocampus. On the other hand, rats that received only the mild foot-shock and no amygdala stimulation showed no increase in Arc protein. When placed in the well-lit compartment, they tended to enter the dark compartment, suggesting they didn’t remember the foot shock.

"In a separate experiment, we chemically inactivated the amygdala in rats very soon after they received a strong foot-shock," McIntyre said. "We found the increase in Arc was reduced and these rats showed poor memory for the foot shock despite its high intensity. This also shows that the amygdala is involved in forming a long-term memory."

The brain is extremely dynamic, McIntyre explained, with some genes in the brain, called "immediate early genes," changing after every experience. "We know the level of the immediate early gene that makes the Arc protein increases in the brain, simply in response to an exposure to a new environment," she said. "Our findings show that this gene makes more Arc protein in the hippocampus only if the experience is emotionally arousing or important enough to activate the amygdala and to be remembered days later."

The researchers were surprised to find no change in the gene that produced the Arc protein when the rat’s amygdala was stimulated. "We weren’t expecting the gene to be uncoupled from the Arc protein," McIntyre said. "We thought an activation of the amygdala would create more gene activation in the hippocampus. But we saw the same amount of the gene in the rats, regardless of the amygdala treatment. It was the Arc protein, created by the gene, that was different. This gives us new insight into the way lasting memories are stored."

The research was supported by several grants from the National Institutes of Health. In addition to McIntyre and McGaugh, co-authors of the study include Oswald Steward, UCI; Teiko Miyashita, Kristopher D. Marjon and John F. Guzowski, the University of New Mexico Health Science Center; and Barry Setlow, Texas A&M University.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>