Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple genetic ’flavors’ may explain autism

26.07.2005


Two recent studies suggest that multiple rare mutations within a single gene may increase risk for autism, according to investigators with the Vanderbilt Center for Molecular Neuroscience and the Vanderbilt Kennedy Center for Research on Human Development



While debate still rages over the ’cause’ of autism, mounting evidence suggests that genetic factors play a major role in the disease. Two recent studies led by James Sutcliffe, Ph.D., and Randy Blakely, Ph.D., investigators with the Vanderbilt Center for Molecular Neuroscience and the Vanderbilt Kennedy Center for Research on Human Development, suggest that multiple rare mutations within a single gene may increase risk for autism. Their findings also may point to new therapeutic options for this devastating disorder.

In this pair of studies, the researchers identify and characterize a number of mutations in the gene that regulate brain levels of serotonin, a neurotransmitter involved in many biological processes including breathing, digestion, sleep, appetite, blood vessel constriction, mood and impulsivity.


About 25 percent of people with autism have elevated levels of serotonin in their blood. Selective serotonin reuptake inhibitors (SSRIs), drugs used to treat depression, anxiety and obsessive-compulsive disorders, also improve some of the symptoms of the disorder. These findings have led scientists to propose that serotonin plays an important role in autism.

In the August issue of the American Journal of Human Genetics, Sutcliffe, Blakely and colleagues report that several mutations within the serotonin transporter (SERT) gene, which regulates serotonin levels in the brain, may be risk factors for autism.

One variation in the SERT gene has been extensively studied and previously led to an inconclusive association to autism. No other variation stood out as a strong risk factor for the disease. Sutcliffe’s own work had detected a strong linkage between autism and a ’spot’ on chromosome 17 – the neighborhood where the SERT gene resides. A few common variants or versions of this gene were known, but did not seem to impart increased risk of autism.

"We failed to see evidence for a common version of the SERT gene that is the same in a majority of people," said Sutcliffe, associate professor of Molecular Physiology and Biophysics and the lead investigator on the study. "So, either this was not the gene, or there had to be different genetic variants that were acting differently in different people."

Sutcliffe, Blakely and colleagues decided to dig deeper into the DNA sequence of the SERT gene to identify these rare mutations and to assess their role in autism risk. Using DNA samples from 120 families likely to possess a genetic risk factor on chromosome 17, the team found 19 different SERT mutations (or variants) in families with multiple affected males, consistent with the well-known sex-bias seen in autism incidence.

Four of these variants were in ’coding’ regions, or parts of the gene that get translated into protein. The other 15 variants were in ’noncoding’ regions, which are edited out of the final protein product but may have important regulatory roles in the expression of the gene. "These coding mutations tracked with an increased severity of rigid-compulsive behaviors," Sutcliffe explained. These types of behaviors are a common characteristic of autism and related disorders like obsessive-compulsive disorders.

The findings underscore the relationship between autism and disorders like OCD and may explain why SSRIs are effective in treating these conditions, he said.

Strengthening the case for autism-linked SERT variants, in the August online issue of the Proceedings of the National Academy of Sciences, Blakely, Sutcliffe and colleagues describe regulatory problems in SERT gene variants, suggesting a possible mechanism for how SERT mutations may disrupt serotonin signaling in autism.

"We show that there are specific signaling pathways that cannot talk to SERTs with these mutations," said Blakely, Allan D. Bass Professor of Pharmacology and senior author on the PNAS study.

Initially, Harish Prasad, Ph.D., a senior scientist in the Blakely lab, examined 10 different SERT variants to see how well they functioned. With the exception of one variant common to both studies, most of these variants had not been previously linked to any clinical conditions.

While the variant SERTs could perform their basic function of ’vacuuming’ up excess serotonin, intracellular signaling pathways that normally fine-tune SERT activity were unable to control five of the 10 mutant SERT proteins examined.

"We were stunned because the cell just can’t ’talk’ to these SERT proteins in a normal way," Blakely said. "Although it’s impossible to extrapolate from a molecule to a person," he said, "it is striking that these mutations, which do not allow proper communication with SERT, show up in a disorder fraught with communication problems."

Interestingly, drugs that target these intracellular pathways, the p38 MAPK and the PKG pathways, have been investigated in a number of disorders unrelated to autism, such as inflammation and cancer. Targeting these pathways might offer a new alternative for treating autism with medications.

"This is a potential therapeutic area that we hadn’t envisioned before," Blakely said.

Based on these findings, Blakely and Sutcliffe predict that there will one day be a way to test autistic children for these gene variants, similar to the testing done for cystic fibrosis, a disease linked to a single gene but triggered by many different mutations.

"Autism has such a high genetic risk, but these new findings suggest that there may be many variants of individual genes at work," Blakely said.

With such genetic testing, said Sutcliffe, "you might be able to predict which kids would respond positively to particular SSRI medications."

"We now have concrete evidence in our families that the SERT gene is a risk factor in autism," Blakely said. "Perhaps more importantly, we also have new pathways that could have some therapeutic end points, and that, to us, is really good news."

Clinton Colmenares | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>