Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple genetic ’flavors’ may explain autism

26.07.2005


Two recent studies suggest that multiple rare mutations within a single gene may increase risk for autism, according to investigators with the Vanderbilt Center for Molecular Neuroscience and the Vanderbilt Kennedy Center for Research on Human Development



While debate still rages over the ’cause’ of autism, mounting evidence suggests that genetic factors play a major role in the disease. Two recent studies led by James Sutcliffe, Ph.D., and Randy Blakely, Ph.D., investigators with the Vanderbilt Center for Molecular Neuroscience and the Vanderbilt Kennedy Center for Research on Human Development, suggest that multiple rare mutations within a single gene may increase risk for autism. Their findings also may point to new therapeutic options for this devastating disorder.

In this pair of studies, the researchers identify and characterize a number of mutations in the gene that regulate brain levels of serotonin, a neurotransmitter involved in many biological processes including breathing, digestion, sleep, appetite, blood vessel constriction, mood and impulsivity.


About 25 percent of people with autism have elevated levels of serotonin in their blood. Selective serotonin reuptake inhibitors (SSRIs), drugs used to treat depression, anxiety and obsessive-compulsive disorders, also improve some of the symptoms of the disorder. These findings have led scientists to propose that serotonin plays an important role in autism.

In the August issue of the American Journal of Human Genetics, Sutcliffe, Blakely and colleagues report that several mutations within the serotonin transporter (SERT) gene, which regulates serotonin levels in the brain, may be risk factors for autism.

One variation in the SERT gene has been extensively studied and previously led to an inconclusive association to autism. No other variation stood out as a strong risk factor for the disease. Sutcliffe’s own work had detected a strong linkage between autism and a ’spot’ on chromosome 17 – the neighborhood where the SERT gene resides. A few common variants or versions of this gene were known, but did not seem to impart increased risk of autism.

"We failed to see evidence for a common version of the SERT gene that is the same in a majority of people," said Sutcliffe, associate professor of Molecular Physiology and Biophysics and the lead investigator on the study. "So, either this was not the gene, or there had to be different genetic variants that were acting differently in different people."

Sutcliffe, Blakely and colleagues decided to dig deeper into the DNA sequence of the SERT gene to identify these rare mutations and to assess their role in autism risk. Using DNA samples from 120 families likely to possess a genetic risk factor on chromosome 17, the team found 19 different SERT mutations (or variants) in families with multiple affected males, consistent with the well-known sex-bias seen in autism incidence.

Four of these variants were in ’coding’ regions, or parts of the gene that get translated into protein. The other 15 variants were in ’noncoding’ regions, which are edited out of the final protein product but may have important regulatory roles in the expression of the gene. "These coding mutations tracked with an increased severity of rigid-compulsive behaviors," Sutcliffe explained. These types of behaviors are a common characteristic of autism and related disorders like obsessive-compulsive disorders.

The findings underscore the relationship between autism and disorders like OCD and may explain why SSRIs are effective in treating these conditions, he said.

Strengthening the case for autism-linked SERT variants, in the August online issue of the Proceedings of the National Academy of Sciences, Blakely, Sutcliffe and colleagues describe regulatory problems in SERT gene variants, suggesting a possible mechanism for how SERT mutations may disrupt serotonin signaling in autism.

"We show that there are specific signaling pathways that cannot talk to SERTs with these mutations," said Blakely, Allan D. Bass Professor of Pharmacology and senior author on the PNAS study.

Initially, Harish Prasad, Ph.D., a senior scientist in the Blakely lab, examined 10 different SERT variants to see how well they functioned. With the exception of one variant common to both studies, most of these variants had not been previously linked to any clinical conditions.

While the variant SERTs could perform their basic function of ’vacuuming’ up excess serotonin, intracellular signaling pathways that normally fine-tune SERT activity were unable to control five of the 10 mutant SERT proteins examined.

"We were stunned because the cell just can’t ’talk’ to these SERT proteins in a normal way," Blakely said. "Although it’s impossible to extrapolate from a molecule to a person," he said, "it is striking that these mutations, which do not allow proper communication with SERT, show up in a disorder fraught with communication problems."

Interestingly, drugs that target these intracellular pathways, the p38 MAPK and the PKG pathways, have been investigated in a number of disorders unrelated to autism, such as inflammation and cancer. Targeting these pathways might offer a new alternative for treating autism with medications.

"This is a potential therapeutic area that we hadn’t envisioned before," Blakely said.

Based on these findings, Blakely and Sutcliffe predict that there will one day be a way to test autistic children for these gene variants, similar to the testing done for cystic fibrosis, a disease linked to a single gene but triggered by many different mutations.

"Autism has such a high genetic risk, but these new findings suggest that there may be many variants of individual genes at work," Blakely said.

With such genetic testing, said Sutcliffe, "you might be able to predict which kids would respond positively to particular SSRI medications."

"We now have concrete evidence in our families that the SERT gene is a risk factor in autism," Blakely said. "Perhaps more importantly, we also have new pathways that could have some therapeutic end points, and that, to us, is really good news."

Clinton Colmenares | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>