Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple genetic ’flavors’ may explain autism

26.07.2005


Two recent studies suggest that multiple rare mutations within a single gene may increase risk for autism, according to investigators with the Vanderbilt Center for Molecular Neuroscience and the Vanderbilt Kennedy Center for Research on Human Development



While debate still rages over the ’cause’ of autism, mounting evidence suggests that genetic factors play a major role in the disease. Two recent studies led by James Sutcliffe, Ph.D., and Randy Blakely, Ph.D., investigators with the Vanderbilt Center for Molecular Neuroscience and the Vanderbilt Kennedy Center for Research on Human Development, suggest that multiple rare mutations within a single gene may increase risk for autism. Their findings also may point to new therapeutic options for this devastating disorder.

In this pair of studies, the researchers identify and characterize a number of mutations in the gene that regulate brain levels of serotonin, a neurotransmitter involved in many biological processes including breathing, digestion, sleep, appetite, blood vessel constriction, mood and impulsivity.


About 25 percent of people with autism have elevated levels of serotonin in their blood. Selective serotonin reuptake inhibitors (SSRIs), drugs used to treat depression, anxiety and obsessive-compulsive disorders, also improve some of the symptoms of the disorder. These findings have led scientists to propose that serotonin plays an important role in autism.

In the August issue of the American Journal of Human Genetics, Sutcliffe, Blakely and colleagues report that several mutations within the serotonin transporter (SERT) gene, which regulates serotonin levels in the brain, may be risk factors for autism.

One variation in the SERT gene has been extensively studied and previously led to an inconclusive association to autism. No other variation stood out as a strong risk factor for the disease. Sutcliffe’s own work had detected a strong linkage between autism and a ’spot’ on chromosome 17 – the neighborhood where the SERT gene resides. A few common variants or versions of this gene were known, but did not seem to impart increased risk of autism.

"We failed to see evidence for a common version of the SERT gene that is the same in a majority of people," said Sutcliffe, associate professor of Molecular Physiology and Biophysics and the lead investigator on the study. "So, either this was not the gene, or there had to be different genetic variants that were acting differently in different people."

Sutcliffe, Blakely and colleagues decided to dig deeper into the DNA sequence of the SERT gene to identify these rare mutations and to assess their role in autism risk. Using DNA samples from 120 families likely to possess a genetic risk factor on chromosome 17, the team found 19 different SERT mutations (or variants) in families with multiple affected males, consistent with the well-known sex-bias seen in autism incidence.

Four of these variants were in ’coding’ regions, or parts of the gene that get translated into protein. The other 15 variants were in ’noncoding’ regions, which are edited out of the final protein product but may have important regulatory roles in the expression of the gene. "These coding mutations tracked with an increased severity of rigid-compulsive behaviors," Sutcliffe explained. These types of behaviors are a common characteristic of autism and related disorders like obsessive-compulsive disorders.

The findings underscore the relationship between autism and disorders like OCD and may explain why SSRIs are effective in treating these conditions, he said.

Strengthening the case for autism-linked SERT variants, in the August online issue of the Proceedings of the National Academy of Sciences, Blakely, Sutcliffe and colleagues describe regulatory problems in SERT gene variants, suggesting a possible mechanism for how SERT mutations may disrupt serotonin signaling in autism.

"We show that there are specific signaling pathways that cannot talk to SERTs with these mutations," said Blakely, Allan D. Bass Professor of Pharmacology and senior author on the PNAS study.

Initially, Harish Prasad, Ph.D., a senior scientist in the Blakely lab, examined 10 different SERT variants to see how well they functioned. With the exception of one variant common to both studies, most of these variants had not been previously linked to any clinical conditions.

While the variant SERTs could perform their basic function of ’vacuuming’ up excess serotonin, intracellular signaling pathways that normally fine-tune SERT activity were unable to control five of the 10 mutant SERT proteins examined.

"We were stunned because the cell just can’t ’talk’ to these SERT proteins in a normal way," Blakely said. "Although it’s impossible to extrapolate from a molecule to a person," he said, "it is striking that these mutations, which do not allow proper communication with SERT, show up in a disorder fraught with communication problems."

Interestingly, drugs that target these intracellular pathways, the p38 MAPK and the PKG pathways, have been investigated in a number of disorders unrelated to autism, such as inflammation and cancer. Targeting these pathways might offer a new alternative for treating autism with medications.

"This is a potential therapeutic area that we hadn’t envisioned before," Blakely said.

Based on these findings, Blakely and Sutcliffe predict that there will one day be a way to test autistic children for these gene variants, similar to the testing done for cystic fibrosis, a disease linked to a single gene but triggered by many different mutations.

"Autism has such a high genetic risk, but these new findings suggest that there may be many variants of individual genes at work," Blakely said.

With such genetic testing, said Sutcliffe, "you might be able to predict which kids would respond positively to particular SSRI medications."

"We now have concrete evidence in our families that the SERT gene is a risk factor in autism," Blakely said. "Perhaps more importantly, we also have new pathways that could have some therapeutic end points, and that, to us, is really good news."

Clinton Colmenares | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>